
Solving di�icult SMT instances using
abstractions and incremental SMT solving

Bachelor’s Thesis of

P. Samuel M. Teuber

at the Department of Informatics

Institute of Theoretical Informatics (ITI)

Reviewer: Prof. Dr. C. Sinz

Advisor: M.Sc. Marko Kleine Büning

15
th

May 2019 – 16
th

September 2019

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and

have not used sources or means without declaration in the text.

Karlsruhe,Wednesday, 11th September 2019

(P. Samuel M. Teuber)

Acknowledgments

First of all, I would like to thank my advisors Marko Kleine Büning and Prof. Dr. Sinz for

allowing me to pursue this exciting project - I very much enjoyed to work on this new

approach for bitvector SMT solving. Furthermore, I’d like to thank Dominik Schreiber

who contributed in sparking my interest in the �eld of logics and SAT solving.

On a more personal note I would like to thank Niklas Uhl who endured the task of reading

my thesis draft and found several �aws in the text.

i

Abstract

Decision procedures for SMT problems based on the theory of bitvectors are a fundamental

component in state-of-the-art software and hardware veri�ers. In this work, we investigate

whether abstractions can help in solving such problems. After a short survey of current

abstraction techniques, we present a novel solving approach for the quanti�er free bitvector

theory (QF_BV in SMT-LIB) based on incremental SMT solving and abstraction re�nement.

We implement this approach in a prototype extending the SMT solver Boolector and

evaluate its performance on the relevant benchmark subset of SMT COMP 2018. In

comparison to Boolector, the new approach shows superior performance for unsatis�able

benchmark instances, while being inferior for satis�able instances. Finally in future work,

we propose various methods to further improve the performance, especially for satis�able

instances.

iii

Zusammenfassung

Entscheidungsverfahren für SMT-Probleme in der Bitvektor-Theorie sind ein wesentlicher

Bestandteil moderner Soft- und Hardware-Veri�zierer. In dieser Arbeit untersuchen wir, ob

Abstraktionsverfahren bei der Lösung von Bitvektor SMT-Problemen helfen können. Nach

einem kurzen Überblick über aktuelle Abstraktionstechniken stellen wir einen neuartigen

Lösungsansatz für die quantorenfreie Bitvektortheorie (QF_BV in SMT-LIB) vor, der auf

inkrementellem SMT solving und Abstraction Re�nement basiert. Wir implementieren

diesen Ansatz in einem Prototyp zur Erweiterung des SMT-Solver Boolector und evaluieren

seine Leistung anhand der relevanten Benchmark-Teilmenge der SMT COMP 2018. Im

Vergleich zu Boolector zeigt der neue Ansatz eine bessere Leistung bei unerfüllbaren

Benchmarkinstanzen, während er bei erfüllbaren Instanzen schlechter ist. Schließlich

schlagen wir verschiedene Methoden vor, um die Leistung, insbesondere für erfüllbare

Fälle, zukünftig zu verbessern.

v

Contents

Acknowledgments i

Abstract iii

Zusammenfassung v

1. Introduction 1

2. Preliminaries 3
2.1. Basic boolean algebra and notation . 3

2.2. Satis�ability and SAT solving . 4

2.3. Satis�ability modulo theory . 5

2.3.1. The SMT language . 5

2.3.2. Theories . 7

2.4. SMT solving . 9

2.4.1. Eager SMT solving . 9

2.4.2. Lazy SMT Solving . 9

3. RelatedWork 13
3.1. Counterexample-guided abstraction re�nement (CEGAR) 13

3.2. Boolector and Lemmas on Demand . 14

3.3. UCLID . 16

4. Solving “di�icult” SMT instances 19
4.1. Naive decomposition . 19

4.2. Less naive decomposition . 20

4.3. The instance’s core . 20

4.4. More information: values and intervals 20

4.5. More information: structure . 21

5. Refinement approach 23
5.1. Abstraction scheme . 23

5.2. Abstracting bvmul . 28

5.2.1. Simple cases . 29

5.2.2. Most signi�cant digit based intervals 30

5.2.3. Relations to other functions . 31

5.2.4. Full multiplication . 32

5.3. Abstracting bvsdiv . 32

5.3.1. Simple cases . 33

vii

Contents

5.3.2. Most signi�cant digit based intervals 33

5.3.3. Relations to other functions . 34

5.3.4. Full division . 34

5.4. Abstracting bvsrem . 34

6. Implementation 37
6.1. PySMT . 38

6.2. Boolector . 38

6.3. Abstraction node managment . 39

7. Evaluation 41
7.1. Time measurements . 41

7.2. Benchmarks set . 41

7.3. Reuse of uninterpreted functions . 42

7.4. Unsatis�able Instances . 42

7.5. Satis�able Instances . 46

8. Conclusion 49

Bibliography 51

Appendices

A. Reproducibility 55

B. List of Figures 57

viii

1. Introduction

The satis�ability modulo theory (SMT) problem deals with deciding numerous fragments

of the �rst-order logic constraint by some Theory T [3] and can be considered an extension

of the satis�ability problem for propositional logic formulae [23]. A SMT-Theory T usually

constraints the behaviour of certain uninterpreted functions or predicates of the �rst-

order logic, but it may also syntactically constrain the language (e.g. by not allowing

quanti�ers). Today, solving SMT problems has become a discipline of its own with many

solving techniques relying in one way or another on a SAT solver in the background.

With SMT-LIB [2] a uni�ed interface to codify SMT instances has been developed that is

supported by most state-of-the-art SMT solvers.

Over the last decade a variety of approximation techniques have been introduced into

the world of SMT solving and model checking. The objective of any such approximation

techniques is to speed up the solving process thus reducing computational cost and

avoiding exponential runtimes for common usecases. Generally speaking, the techniques

can be categorized into over-approximation (or abstraction) techniques like lemmas on

demand [10] on the one hand, and under-approximation techniques like the ones used in

UCLID [11] or counterexample-guided abstraction re�nement (CEGAR) [13] on the other

hand. Usually, over-approximation techniques help in speeding up the solver’s runtime

for unsatis�able SMT-instances, while under-approximation techniques help reducing the

runtime of satis�able instances [8].

Although abstraction techniques have been successfully used for the array theory

[10] as well as the uninterpreted functions theory [27, 26], there is little work on using

over-approximations for the quanti�er free bitvector logic (QF_BV in SMT-LIB [2]) outside

the approach taken with UCLID [11]. This thesis therefore takes up the topic of solving

“di�cult” bitvector SMT instances, like the ones provided in the LLBMC family of benchmarks
[1], using abstractions.

Contributions Our contributions are twofold: First, we propose a theoretical framework

allowing a simple proof of correctness for approximation techniques in SMT solving.

Subsequently, we present an abstraction re�nement technique for three functions of

the QF_BV SMT-Theory (namely bvmul, bvsdiv and bvsrem), prove their correctness and

evaluate their performance using the relevant benchmark subset of 2018’s SMT competition

[18] and a prototype implementation of the abstraction re�nement approach based on

Boolector [25]. We show that the abstraction approach at hand can solve 43 unsatis�able

instances more than Boolector which is a 30% improvement in comparison to the current

number of unsatis�able instances unsolved. Further, we �nd that the abstraction approach

1

1. Introduction

currently performs worse than Boolector for satis�able instances and propose various

ideas for improving the runtime for this usecase in future work.

Outline After an introduction to the topic and a short survey of current abstraction and

solving approaches in Chapters 2 and 3, we explain the pathway and intuition that led to

the abstractions presented in Chapter 5. Finally, we present the implemented prototype in

Chapter 6 and compare the prototype to Boolector’s performance in Chapter 7.

2

2. Preliminaries

In this Chapter, we will introduce the foundations of Boolean algebra and SAT solving.

Based on these techniques we will introduce SMT solving and present two predominant

SMT solving approaches.

2.1. Basic boolean algebra and notation

The structure and notations of this Section are based on [23] and [7].

De�nition 2.1.1 (Boolean variable, Atom, Literal)
• A boolean variable (represented by lowercase latin letters) is a variable which can be

either true or false .

• An atom is a boolean variable.

• A literal l is a boolean variable x or its complement ¬x.

De�nition 2.1.2 (Boolean formula)
• An atom, � (false) and � (true) are boolean formulae.

• If F is a boolean formulae so is (¬F).

• If F and G are boolean formulae so are (F ∧ G) and (F ∨ G).

From hereon, we call the set of all Boolean formulae For
0
.

We de�ne var(F) as the set of all variables appearing in F . For the rest of this Chapter F
and G will be assumed to be Boolean formulae.

De�nition 2.1.3 (Interpretations and Models)
An interpretation I for F is a mapping I : var(F)→ {0, 1}. For some interpretation I the

value of I(F) is de�ned inductively through:

• I (�) = 0 and I (�) = 1.

• For ¬G the value is (1− I(G)).

• For G1 ∧ G2 the value is 1 i� I(G1) = 1 and I(G2) = 1 , otherwise 0.

• For G1 ∨ G2 the value is 1 i� I(Gi) = 1 for either or both i ∈ {1, 2}, otherwise 0.

Some interpretation I is a model for F i� I(F) = 1 which we denote as I � F .

A formula F is called satis�able if there exists a model I for F .

3

2. Preliminaries

Logic formulae with connectors like ⇐⇒ , =⇒ etc. can similarly be de�ned as

Boolean formulae however this is not strictly necessary as any boolean function can be

represented by a formula only using the connectors described above. Parentheses may be

omitted in which case ¬ takes precedence over ∧ takes precedence over ∨.

De�nition 2.1.4 (Conjunctions, Disjunctions and Clauses)
We call F ∧ G a conjunction and F ∨ G a disjunction.

A clause is a disjunction of literals.

A formula is in conjunctive normal form (CNF) if the formula is a conjunction of clauses.

A formula is in disjunctive normal form (DNF) if the formula is a disjunction of conjunctions.

Example 2.1.5
(a ∨ ¬b ∨ c) ∧ (d ∨ ¬e) ∧ (g ∨ b ∨ c) is in CNF and

(a ∧ ¬b ∧ c) ∨ (d ∧ ¬e) ∨ (g ∧ b ∧ c) is in DNF.

2.2. Satisfiability and SAT solving

The NP-complete problem of Satis�ability (Sat) concerns with whether a given Boolean

formula F in CNF is satis�able or not. A decision procedure for the Sat problem is called

a SAT solver. For a proof on the NP-completeness of Sat the reader is referred to [16].

DPLL One of the �rst well-known algorithms for solving SAT problems is the Davis-

Putnam-Logemann-Loveland (DPLL) algorithm [14] of which many variants are still used

today. Generally speaking DPLL works by:

A) Unit Propagation of single literal clauses
Any literal which appears as the only literal in a clause may be assigned so that the

clause evaluates to true

B) Pure literal deletion
Any literal which only appears as positive (or negative) literal may be �xed

C) Case splitting
If rules A) and B) can no longer be applied, some literal l is chosen and the problem

is split up in the case where l is true and in the case where l is false.

CDCL Variants of the DPLL-algorithm have been extended by functionality to “learn”

from contradictions encountered during search. This technique is called Con�ict-Driven-

Clause-Learning (CDCL) and works by adding a clause which makes sure to avoid the

encountered contradiction during further search. For details on the methodology the

reader is referred to [24].

4

2.3. Satis�ability modulo theory

Unsatisfiability Cores Another feature widely implemented in SAT solves is the ability

to produce Cores for unsatis�able instances. This allows the SAT solver to return the

subset of formulae which was used to produce the contradiction making the instance at

hand unsatis�able. This feature is used in a wide range of applications including model

checking, debugging speci�cation and abstraction re�nement [23].

Despite its theoretical hardness and the lack of known polynomial time algorithms for

the Sat Problem, much progress has been made on practical SAT solving using variants of

the DPLL-algorithm and CDCL. Among other applications those advances are particularly

useful for the solving of so called SMT problems which are described in the next Section.

2.3. Satisfiability modulo theory

The previous Sections described various aspects of Boolean Algebra. For many applications,

especially in software veri�cation, however, a problem description in a more powerful

language is much more desirable. For example, describing the manipulation of datastructures

such as bitvectors and arrays is better comprehensible and a lot more concise than

describing the manipulation of isolated bits in memory. This gives rise to the concept

of Satis�ability Modulo Theory (SMT) which restricts �rst-order logic or higher-order

logics to syntactic or semantic fragments o�ering a good trade-o� between the language’s

expressiveness and the ability to automatically check an instance’s satis�ability. Such

fragments can then be decided by specialized decision-procedures exploiting properties of

the speci�c sublanguage to enhance the solvers practical e�ciency despite high worst-case

computational complexity [3]. This Section will give an overview over SMT and then

describe three speci�c theories in more detail.

2.3.1. The SMT language

In a �rst step, this Section introduces the many-sorted �rst-order logic as described in [3]

with some inspiration from [7].

De�nition 2.3.1 (Signature)
Given an in�nite set S of sort symbols and an in�nite set X of variables each assigned a

sort s ∈ S, a signature Σ consists of a tuple

(
ΣS,ΣP ,ΣF , ∫P , ∫F

)
where:

• ΣS ⊆ S is a set of sort symbols;

• ΣP
is a set of predicate symbols;

• ΣF
is a set of function symbols;

• ∫P : ΣP →
(
ΣS
)∗

is a mapping from predicate to predicate sort; and

• ∫F : ΣF →
(
ΣS
)+

is a mapping from function to function sort.

5

2. Preliminaries

De�nition 2.3.2 (Arity and Rank)
For a function g ∈ ΣF

with ∫F (g) = σ1· · ·σnσ the rank of g is de�ned as σ1· · ·σnσ. We

call n the arity of g (note that the arity may be 0).

For a predicate p ∈ ΣP
with ∫P (p) = σ1· · · σn the rank of p is de�ned as σ1· · · σn . We

call n the arity of p (as before the arity may be 0 in which case ∫P (p) is the empty word).

De�nition 2.3.3 (Sorted Σ-terms)
A Σ-term of sort σ is either a variable x ∈ X of sort σ or an expression g (t1, . . . , tn) where

g ∈ ΣF
and ∫F (f) = σ1· · ·σnσ with Σ-terms ti of sort σi for every i ∈ J1, nK.

For any σ ∈ ΣS
, we de�ne Term

Σ
σ as the set of all Σ-terms of sort σ.

De�nition 2.3.4 (Atomic Σ-formulae, Σ-literals)
Atomic Σ-formulae are:

• The symbols � (false) and � (true);

• Expressions t1
.
= t2 with t1, t2 Σ-terms of the same sort σ ∈ ΣS

; and

• Expressions p (t1, . . . , tn) with p ∈ ΣP
, ∫P (p) = σ1· · ·σn and ti of sort σi for every

i ∈ J1, nK.

In correspondence with the previous de�nitions of literals in Boolean Algebra a Σ-literal

is an atomic Σ-formula φ or its complement ¬φ.

De�nition 2.3.5 (Σ-formulae)
Analogue to Boolean Algebra the Σ-formulae are de�ned inductively:

• Any Σ-literal is a Σ-formula.

• If ψ is a Σ-formula so are (¬ψ) and ∃x ψ with x ∈ X.

• If ψ and φ are Σ-formulae so are (ψ ∧ φ) and (ψ ∨ φ).

Given this syntax the language’s semantic can now be de�ned in a similar manner as

for Boolean algebra using interpretations:

De�nition 2.3.6 (Σ-interpretation)
For a signature Σ and a set X ⊆ X of variables with sorts in ΣS

a Σ-interpretation over X

is a tuple I =
(
U , IS, IX , IF , IP

)
where:

• U 6= ∅ is the universe of all possible values;

• IS : ΣS → 2U 1
maps each sort σi to a domain Di := IS (σi) of possible values for

Σ-terms of this sort;

• IX : X → U maps each variable x ∈ X to a value v ∈ U ;

• IF maps any function symbol f ∈ ΣF
of rank ∫F (f) = σ1· · ·σnσn+1 to a function

fI : D1 ×· · · ×Dn → Dn+1; and

12U is the powerset of U

6

2.3. Satis�ability modulo theory

• IP maps any predicate p ∈ ΣP
of rank ∫P (p) = σ1· · ·σn to a truth function

pI : D1 ×· · · ×Dn → {0, 1}.

IX must respect the sort σi of x (i.e., x of sort σi may only be mapped to values v ∈ Di)

For terms t, variables v or predicates p, we denote their value according to a Σ-interpretation

I as tI , vI and pI .

De�nition 2.3.7 (Substitution)
For some interpretation I =

(
U , IS, IX , IF , IP

)
over variables X ⊆ X with x ∈ X of

type σi and a ∈ Di, we de�ne I [x 7→ a] as the interpretation

(
U , IS, IX , IF , IP

)
with:

IX(v) =

{
a v = x

IX(v) otherwise

De�nition 2.3.8 (Σ-model)
A Σ-interpretation I is a Σ-model for some formula φ if I satis�es φ (i.e., I � φ).

The satis�es relation � can be de�ned inductively:

• I 2 � and I � �.

• For Σ-terms t1, t2: I � t1
.
= t2 i� tI1 = tI2 .

• For Σ-terms t1, . . . , tn and a suitable predicate p ∈ ΣP
:

I � p (t1, . . . , tn) i� pI(tI1 , . . . , t
I
n) = 1.

• For some Σ-formula ψ: I � ¬ψ i� I 2 ψ.

• For Σ-formulae φ, ψ: I � φ ∧ ψ i� I � φ and I � ψ.

• For Σ-formulae φ, ψ: I � φ ∨ ψ i� I � φ or I � ψ.

• For a Σ-formula ψ:

I � ∃x :σi ψ i� I [x 7→ a] � ψ for some a ∈ Di.

Other logic connectors can be transformed into formulae in the form described above.

In particular ∀x ψ can be written as ¬∃x ¬ψ. Furthermore ∃x ψ can be written as ∃x :σ ψ
in order to state that x is of sort σ.

2.3.2. Theories

Given the generic many-sorted �rst order logic de�ned above, we can now de�ne certain

theories which constrain the interpretation of various predicates in ΣP
or functions in ΣF

to values in correspondence with the theory’s desired behaviour. We describe 3 theories

presented in [3] and explain how these theories can be intertwined yielding SMT-LIB

theories [2].

De�nition 2.3.9 (Σ-Theory)
A Σ-Theory is a tuple T = (Σ, A) where Σ is a signature and A is a set-theoretical class of

interpretations.

7

2. Preliminaries

De�nition 2.3.10 (T-interpretation, T-satis�ability, T-model, T-entails)
• Given a theory T = (Σ, A) any Σ-interpretation I is a T-interpretation if I ∈ A.

• A formula is T-satis�able if it is satis�ed by some T-interpretation.

• A T-interpretation which satis�es some formula ψ is a T-model for this formula (i.e.,

I �T ψ).

• A set Φ of formulae T-entails a formula ψ (i.e., Φ �T ψ) i� every T-interpretation

that satis�es Φ also satis�es ψ.

While omitted in the de�nitions above for conciseness, it is worth to note that an interpretation

I may be a T-model for some formula ψ even if I also de�nes values for functions,

predicates or even sorts not in the signature of ψ. Among other bene�ts this can be useful

when combining theories. From hereon, we denote the set of all Σ-formulae of some

theory T as For
1
T .

Bitvectors: QF_BV The quanti�er free (QF) theory of �xed size bit vectors (BV), abbreviated

as QF_BV, concerns with the modeling of hardware and low-level software through bitvectors.

For every n ≥ 1 QF_BV contains a sort BVn for bitvectors of length n. Any bit of such

a vector may be either 0 or 1. In terms of function symbols the QF_BV theory contains

extraction (typically written as x[i] to extract a single bit and x[i : j] to extract bits j to i
with i > j) and concatenation (typically written as x ◦ y) functions as well as a variety

of well-known functions implemented in modern hardware and software (e.g. addition,

multiplication, division, shifts, negation, and, or, xor etc.). In its general version QF_BV

(encoded in binary) is NExpTime-complete [22].

Arrays: QF_ABV Adding arrays to the QF_BV theory results in a theory known as QF_ABV.

The “stand-alone” extensional array theory contains as sorts A, I and E (for array, index

and array elements) however I and E are bitvectors in QF_ABV. In terms of function

symbols a read as well as a write function are provided with ∫F (read) = AIE and

∫F (write) = AIEA. The array theory is de�ned through 3 axioms which any signature

must satisfy to support the (extensional) array theory:

∀a :A ∀i : I ∀e :E read (write (a, i, e) , i) = e (A1)

∀a :A ∀i : I ∀e :E i 6= j =⇒ read (write (a, i, e) , j) = read (a, j) (A2)

∀a :A ∀b :A (∀i : I read (a, i) = read (b, i)) =⇒ a = b (A3)

The non-extensional array theory can be obtained by dropping axiom (A3).

8

2.4. SMT solving

Uninterpreted Functions: QF_AUFBV The most simple theory imaginable is a theory

containing nothing but arbitrary (uninterpreted) functions with equality. This theory

can obviously be used to describe the application of functions on a wide range of objects.

However, allowing arbitrary uninterpreted function symbols with bitvectors as parameters

and outputs integrates the theory of uninterpreted functions (UF) into QF_ABV resulting

in the QF_AUFBV theory. This theory can be axiomatized throught the function congruence
axiom [27] where x̄ and ȳ are arbitrary bitvectors of bitwidth n:

∀x̄, ȳ
n∧
i=1

xi = yi =⇒ f (x̄) = f (ȳ) (EUF)

2.4. SMT solving

Over time, a wide range of solvers has evolved making use of a variety of techniques to

solve SMT formulae. While we refer the reader to [3] for a more complete overview of the

various techniques used in SMT-solving the following Sections will give a brief overview

of two predominant methodologies used in SMT-solving - namely Eager and Lazy SMT

Solving

2.4.1. Eager SMT solving

Eager SMT solving is based on the idea of reducing a Σ-formula φ of some theory T into a

Boolean algebra formula which can be solved by an o�-the-shelf SAT solver.

This process can be described as a function tuple (e, t) where e : For1
T → For

0
and t maps

Boolean interpretations I0
to T -interpretations I1

T . For the eager SMT solving to work,

functions (e, t) are needed such that I0 � e (φ) i� t (I0) � φ.

A good example of the eager SMT solving approach is bit blasting which solves bitvector

arithmetic problems from theories like QF_BV by assigning one Boolean variable for each

bit appearing in an instance and then implements all functions used in the problem through

the logic connectors available in Boolean algebra.

Example 2.4.1 (Addition)
Given two variables x : BV2, y : BV2 and the formula 11

.
= add (x, y), the SMT problem

can be transformed into Boolean algebra by writing out the addition:

1↔x[0]⊕ y[0] Calculating bit 0
1↔x[1]⊕ y[1]⊕ (x[0] ∧ y[0]) Calculating bit 1

This problem can then be solved by an o�-the-shelf SAT solver.

2.4.2. Lazy SMT Solving

It is easy to see that the eager approach described above can lead to very large Boolean

formula sets. In particular complicated operations like multiplication or division instantly

lead to a large number of formulae being added to the SAT solver instance. For this reason,

9

2. Preliminaries

there exist a variety of approaches making use of SAT solvers to solve the overall structure

(i.e., the abstraction explained below) of the problem while leaving the resolution of theory

speci�c variable assignments to theory speci�c solvers.

Abstractions Given an in�nite set Π of propositional variables, we de�ne a mapping (·)a
which provides an injective mapping of atomic Σ-formulae to Π. For quanti�er-free Σ-

formulae, we can then de�ne (¬ψ)a = ¬ (ψ)a, (ψ ∧ φ)a = ψa∧φa and (ψ ∨ φ)a = ψa∨φa.
Given some SMT formula Φ this allows us to give the overall structure (i.e., Φa

) to an

o�-the-shelf (incremental) SAT solver which will return a model for Φ containing a

set S = {ψa1 , . . . , ψan} of atomic Σ-formulae which need to be satis�ed in this speci�c

assignment.

Theory Solver A theory speci�c solver can then check whether the conjunction of S
(speci�cally the conjunction of the original atomic Σ-formulae) has a satis�able assignment

or not. If it does, Φ is satis�able, if not a clause∨
ψ∈S

¬ψ

is added to the SAT solver instance and another satisfying assignment of Φa
can be searched

to run the theory solver on. This can be repeated until the SAT solver either �nds an

assignment also satis�able for the theory solver or �nds the abstracted instance Φa
and its

added constraints to be unsatis�able in which case Φ is unsatis�able, too.

Algorithm To make the remarks made above clearer Algorithm 1 gives a glimpse on the

inner workings of Lazy SMT solvers where get_model is a call to some (incremental) SAT

solver and check_satT is a call to the solver for theory T . Note that Ac returns the concrete

atoms from their abstracted versions generated through ψa as previously explained.

10

2.4. SMT solving

Algorithm 1 A lazy SMT solving algorithm as presented in [3]

Require: ψ is a quanti�er free Σ-formula of theory T
Ensure: output is sat if ψ is T -satis�able, and unsat otherwise

F := ψa

loop
A := get_model (F)
if A = none then
return unsat

else
µ := check_satT (Ac)
if µ = sat then
return sat

else
F := F ∧ ¬µa

end if
end if

end loop

11

3. RelatedWork

While bit blasting (as described in Chapter 2) is the predominant approach for solving the

QF_BV theory and related theories, a multitude of techniques are being combined today in

order to avoid bitblasting entire instances. In this Chapter, we give an overview of some

of those techniques based on abstraction re�nement.

3.1. Counterexample-guided abstraction refinement (CEGAR)

Counterexample-guided abstraction re�nement (CEGAR) was �rst proposed in the �eld of

software veri�cation for the problem of verifying whether a given program P adhears to

some speci�cation ψ [13].

Given some program P containing variables V = {v1, . . . , vn} in domains Dv1 , . . . , Dvn

the set D = Dv1 ×· · · × Dvn is the set of states of P . Let p be some predicate, then

Atoms (p) is the set of atomic formulae in p and Atoms (P) is the set of atomic formulae

in P . If some program state d ∈ D satis�es some predicate p, we write d � p. A

program de�ned this way can be directly transformed into a labeled Kripke-Structure

de�ned asM = (S, I, R, L) with S = D, I ⊆ D, R ⊆ S × S, L : S → 2Atoms(P)
where

L (d) = {f ∈ Atoms (P) | d � f}. The objective is then to compute whetherM � ψ,

that is, whether the P ’s Kripke-StructureM satis�es the speci�cation ψ.

Abstractions An abstraction in the CEGAR sense is a surjectionh : D → D̂. An abstraction

h induces an equivalence relation on the set D of program states with d ≡h e i�

h (d) = h (e). Note that this abstraction is an under-approximation of the problem as seen

below. Given a Kripke-StructureM and an abstraction h the abstracted Kripke-Structure
M̂ =

(
Ŝ, Î , R̂, L̂

)
is de�ned through:

• Ŝ = D̂

• d̂ ∈ Î ⇐⇒ ∃d ∈ I : h (d) = d̂

• R̂
(
d̂1, d̂2

)
⇐⇒ ∃d1, d2 ∈ D : h (d1) = d̂1 ∧ h (d2) = d̂2 ∧R (d1, d2)

• L̂
(
d̂
)

=
⋃

h(d)=d̂

L (d)

Theorem 3.1.1
Let h be an abstraction and ψ some speci�cation. Given that for every atomic formula f
in ψ and for all d, d′ ∈ D the property (d ≡h d′) =⇒ (d � f ⇔ d′ � f) holds (we call

13

3. Related Work

this “f respects h”), then:

(i) L̂
(
d̂
)

is consistent for all abstract states d̂ in M̂

(ii) M̂ � ψ =⇒ M � ψ

Do note that while correctness (as de�ned byψ) of the abstract modelM̂ implies correctness

of the original modelM a model might still be correct if M̂ 2 ψ.

Initial abstraction Upon initialization of the solving process an initial abstraction h is

generated by grouping the variables V = {v1, . . . , vn} into disjoint variable clusters

V = V C1∪̇· · · ∪̇V Cn. A variable cluster containing variable vi contains any other variables

vj which appear in the same atomic formulae as vi - this induces an equivalence relation

relation on the variables. For each variable cluster V Ci = {vi1 , . . . , vik} an abstraction is

de�ned through:

hi (d1, . . . , dk) = hi (e1, . . . , ek) i� for all atomic formulae f

(d1, . . . , dk) � f ⇐⇒ (e1, . . . , ek) � f

Handling counterexamples If the solver returns M̂ � ψ, Theorem 3.1.1 tells us that

M � ψ. Otherwise the solver is assumend to return a counter example that can be checked

on its correctness. More precisely it is necessary to check whether the counterexample is

only possible in the abstracted structure M̂ or not. If the counterexample is caused by

the abstraction and is therefore spurious, a re�nement step is made detailing the previous

abstractions and the solver will run once again on this less-abstracted version of the

problem [13] until the counterexample is either correct or M̂ � ψ.

Since its introduction this approach of abstracting and re�ning has been used in wide

range of applications including software veri�cation [13], relational learning [12] and SAT

based planning [15] as the core idea can be reused in most �elds concerned with solving

logic formulae.

3.2. Boolector and Lemmas on Demand

With Boolector [9] an approach to over-approximation called Lemmas on Demand was

introduced to SMT solving. Boolector uses this extreme variant of lazy SMT solving for

both solving array theory problems [10] and uninterpreted function theory problems [26].

This is particularly interesting as Boolector interleaves over- and under-approximation

techniques as can be seen in Figure 3.1. Additionally Boolector makes heavy use of

rewriting to solve easy bitvector theory instances - sometimes without using a SAT solver

back-end at all.

14

3.2. Boolector and Lemmas on Demand

Array formula

Replace UF and arrays by over-approximation

Add under-approximation clauses C

SAT?spurious? C used?

sat

unsatAdd lemma

Encode to CNF

Call SAT solver

YES NO

NO

YES

Re�ne over-approx.

Call SAT solver
NO

YES

Re�ne

under-approx.

Figure 3.1.: Interleaving over- and under-approximation techniques in Boolector as

presented in [8]

Rewriting SMT formulae passed to Boolector are rewritten in 3 levels [9]. In a �rst step

very basic logic rules are applied during formula construction. In a second step global term

substitution is performed on a topologically sorted DAG representation of the formula set.

In a third and last step arithmetic normalization is performed.

Under-Approximation Boolector makes use of under-approximation on the CNF level

by adding assumptions to the SAT solver instance [8]. Boolector restricts the e�ective
bitwidth of a given bitvector to a smaller size which is then sign extended (or sometimes

zero extended) to reach the original bitsize. Using a newly introduced assumption variable

e this behaviour can be (de)activated as needed for each run through the SAT solvers

assumption interface by adding/removing an activation clause e or ¬e. The additional

constraints reduce the search-space size and thereby help to potentially speed up the

solver’s search. Furthermore, the additional constraints lead the solver towards smaller,

usually better understandable models.

15

3. Related Work

Lemmas on Demand Boolector uses over-approximation for solving the array [10] and

uninterpreted function (UF) theories [27]. We will explain the idea behind this extreme

variant of lazy SMT solving based on the uninterpreted function case.

For its initial abstraction every UF applications is replaced by a fresh bitvector variable.

Afterwards the problem can be eagerly encoded as a SAT problem. If the SAT solver

returns unsatis�ability the original problem is unsatis�able, too. If on the other hand,

the SAT solver returns a satisfying interpretation I , we must now check whether the

corresponding SMT interpretation t (I) is consistent with the uninterpreted function’s

theory. More precisely, we must check whether for every function f its applications

f (x1) , . . . , f
(
xmf

)
are consistent with the (EUF) axiom.

If it is found that for two UF applications t = f (a1, . . . , an) and s = f (b1, . . . , bn) the

axiom is not respected (i.e., ai = bi for all i ∈ J1, nK but s 6= t) an additional lemma

encoding this constraint will be added. In the given counter-example, the choice of the

uninterpreted function f on which the bitvectors are applied may depend on a certain

number of ITE (if then else) conditions. To resolve this, the shortest paths ps and pt from

the function application s (and t) to f are calculated and all ite conditions cs0, . . . , c
s
j

(ct0, . . . , c
t
k) on the paths evaluating to � under t (I) as well as all ite conditions ds0, . . . , d

s
l

(dt0, . . . , d
t
m) on the paths evaluating to � under t (I) are collected. Remember that t (I) is

the SMT model corresponding to the Boolean Algebra model I returned by the underlying

SAT solver. Using this information the following lemma is added to the SAT instance:(
j∧
i=0

csi ∧
k∧
i=0

cti ∧
l∧

i=0

¬dsi ∧
m∧
i=0

¬dti ∧
n∧
i=0

ai = bi

)
=⇒ s = t.

This approach proved very e�ective in solving both the UF theory as well as the array

theory. For its extension to arrays the reader is referred to [10]. While not relevant for

this work [27] also explains how lemmas on demand can be used for lambda expressions.

The technique can be further optimized by only re�ning those UF applications which are

actually relevant for the current satisfying counterexample [26].

Overflow Detection Boolector implements e�ciently encoded predicates for over�ow

detection in addition, substraction, multiplication and division [8]. Let L (a) be the number

of leading bits (zero or one) for some bitvector a. Given a signed multiplication instance

r = a∗bwhere a and b are bitvectors of bitwidth n, an over�ow occurs i�L (a)+L (b) < n
or r [n]⊕ r [n− 1] [20]. This result allows to check a signed multiplication for over�ow

issues by only calculating the �rst n+ 1 multiplication bits in contrast to 2n bits for the

naive encoding. Similar predicates are available for all basic arithmetic operations.

3.3. UCLID

UCLID [11] was one of the SMT solvers which introduced the interleaving of over- and

under-Approximations using abstractions. Given an input formula φ the UCLID solver

constructs an SMT under-approximation φ. The formula is usually generated by restricting

variables to their sign-extended versions of a smaller bit size as previously seen in Boolector

16

3.3. UCLID

(i.e., vn· · · v1 becomes vm· · · vmvm−1· · · v1.) This formula φ is then eagerly encoded and

passed to a SAT solver. The SAT solver can produce one of two outcomes:

SAT In case the SAT solver �nds a model such that t (I) � φ the solver returns sat as

t (I) � φ. In this case UCLID can potentially speed up the SAT solver’s runtime due to the

reduced search space when solving the under-approximation φ

UNSAT In case the SAT solver returns an unsatis�ability result, UCLID uses the UNSAT-

Core returned by the solver to extract the the formulae which produced the contradiction.

Only based on these formulae (thereby leaving out all formulae of the instance that are

not part of the contradiction) an over-approximation φ is built. In contrast to φ this

over-approximation does not restrict the bitwidth of the input variables to some m < n ,

but allows the full bitwidth n. φ is then passed to the SAT solver. If the SAT solver still

returns unsatis�ability, UCLID returns unsat. In case the solver returns satis�ability, the

under-approximation φ is re�ned (usually increasing the bitwidth) and a second iteration

begins.

For unsatis�able instances UCLID takes advantage of cases where a small number of

formulae can produce the contradiction and makes the SAT-solver only look at these

formulae thereby potentially improving the solver’s performance.

17

4. Solving “di�icult” SMT instances

The “LLBMC Family of Benchmarks” is a benchmark family introduced in [1] containing

SMT instances which are typically hard to solve for classical QF_BV solvers. The objective

of this thesis is to investigate why certain instances of this benchmark family seem

intrinsically hard to solve and whether abstractions coupled with incremental SMT solving

could enable classic QF_BV solvers to decide some of the instances within reasonable time

constraints. In this Chapter, we describe the pathway and intuitions which lead to the

abstractions presented in Chapter 5, where the hasty reader may want to read on.

modmul A good example for the kind of benchmarks this family contains is the modmul

benchmark which demands the solver to proof that for arbitrary bitvectors x, y and n:

x
.
= mul (y, n)⇒ srem (x, n)

.
= 0

This is done by proving the unsatis�ability of the formula’s contradiction. While solvers

like Boolector are able to solve the 8 bit case within a reasonable time span, the 32 bit case

takes longer than 8 hours to solve insinuating an exponential runtime growth and making

it a very hard problem to solve despite it’s briefness. This is particularly cumbersome as

such basic results, which humans are usually able to categorize as correct within seconds,

could be quite useful when deciding larger SMT problems in which this instance might

happen to be embedded. We therefore started by analyzing this instance and searching for

plausible abstractions using Boolector as basis for our experiments.

4.1. Naive decomposition

Probably the most naive approach to �nd an over-approximation of a given problem is to

simply drop a certain number of clauses on the SAT-level before initiation of the solving

process. This makes the solver ignore a certain number of clauses thereby potentially

reducing the pathways a solver must take before �nding a contradiction. This is of course

provided we did not drop “too many” constraints and the instance is now satis�able in

which case we have to go back and add further constraints before another round of solving.

Before diving any deeper into the problem, we therefore decomposed the And-Inverger-

Graph [6] produced by Boolector for the modmul instance by splitting up the tree into it’s

non-decomposable output nodes. We then investigated whether certain subsets of these

nodes might already be enough to produce a contradiction thus proving unsatis�ability.

This turned out not to be the case. On the contrary, all subsets evaluated were satis�able

and only when adding the very last output node the solver returned unsat. If at all the

decomposition above only had a negative impact on the solver’s runtime.

19

4. Solving “di�cult” SMT instances

4.2. Less naive decomposition

Given the rather useless results above, we could have already given up hope on decomposition

being the key to success however a less naive way of decomposing the instance - namely

adding the multiplication function bit by bit incrementally to the instance - had not yet

been evaluated. Although this decomposition neither ended up improving the runtime

performance of the solver the fact that it did not help is probably just as interesting for

understanding the train of thought leading up to the successful abstraction.

The idea behind this second decomposition was to only add the least signi�cant bit of

the multiplication function on the instance’s �rst run and later on incrementally add more

and more bits of the multiplication logic. The intuition of this decomposition scheme was

that this might lead to a contradiction earlier on as it’s clear that the input formula is just

as false for an 8 bit case as it is for a 32 bit case. This however did not work out the way it

was intended as the upper bits were now free from any constraints and therefore could

be set in any way necessary to �nd a counter-example. Only after the instance’s last bit

was added, the solver would return an unsatis�ability result and again with nothing but

negative impact on the runtime needed.

4.3. The instance’s core

At this point it became clear that using “just the formulae that are already there” could

not signi�cantly speedup the solver’s runtime. This became even clearer looking at the

UNSAT-Core produced by the underlying SAT solver: It turned out that some 90% of the

instance’s SAT clauses were in fact inside the UNSAT-Core and therefore (at least according

to the SAT solver used) necessary to produce the desired contradiction. In particular this

result suggested that the methodology used in UCLID [11] would not help in deciding this

instance. Unfortunately - due to a lack of source, binaries and time - we were not able to

test modmul on the UCLID solver. While it was not possible to show any kind of relation

between the hardness of instances and their Core size in later (small scale) experiments it

seemed like the only way to produce a contradiction faster would be through the addition

of further (or other) information to the instance.

4.4. More information: values and intervals

The easiest way to add information is to prede�ne the result values of multiplication and/or

remainder for certain well known values like 1, 0 etc. Furthermore, for multiplications

we can de�ne intervals based on the factor’s most signi�cant bit and thereby de�ne an

interval for the multiplication’s result. While those ideas will be described in more detail

in the next Chapter it turned out that even those abstractions did not help with �nding a

solution for this particular instance. It’s important to note these constraints were added

in a �rst step before full multiplication was added afterwards if and only if the �rst step

returned satis�ability.

20

4.5. More information: structure

4.5. More information: structure

In a last step, we then looked at giving the solver information on the relations between

di�erent functions. At this point it seemed clear that for any abstraction that would focus

on the concrete values of the functions the solver would most likely have to try out a very

large number of those values before producing the desired contradiction. The alternative

was therefore to abstract away the actual values entirely and only look at what properties

must be upheld between functions. Looking into the C++ standard [19], we �nd that the

following property must be upheld for any modulo function application:

mul (n, sdiv (x, n)) + srem (x, n) = x

With minor modi�cations necessary for this abstraction to work for instances with varying

bitwidths and over�ows, this abstraction (detailed in the next Chapter) allowed solving

the modmul instance for 32 bits in seconds instead of hours.

Later experiments showed that these value and interval based as well as the structure

based abstractions not only helped in this case but also improved the solver’s performance

for a certain number of previously (within SMTCOMP’s time constraints) unsolved

benchmarks of SMTCOMP 2018 [18].

21

5. Refinement approach

In this Chapter, we present our abstraction procedure for the quanti�er free bitvector

theory (QF_BV). The approach substitutes applications of speci�c functions (here bvmul,

bvsdiv and bvsrem) by abstractions de�ned on the QF_UFBV theory. During the solving

process, an instance’s abstractions are iteratively re�ned until the SAT solver either returns

unsatis�ability or satis�ability with correct assignments. In Chapter 7 we will see that

this approach outperforms Boolector’s current results for unsatis�able instances. After a

theoretical de�nition of our abstraction methodology in Section 5.1 we present abstraction

schemes for bvmul (Section 5.2), bvsdiv (Section 5.3) and bvsrem (Section 5.4).

5.1. Abstraction scheme

In the SMT-LIB standard [2] for QF_BV the functions examined in this work (i.e., bvmul,

bvsdiv and bvsrem) support overloading in the sense that a single function symbol like

bvmul supports multiple ranks. Multiplication for example is supported for any bitwidth.

To simplify the explanations in the following Sections one can think of bvmulr as the bvmul

operation of rank r thereby avoiding the issue of overloading.

De�nition 5.1.1 (Approximation)
Given some theory T = (Σ, A) and some function symbol op ∈ ΣF

with ∫F (op) =
σ1· · ·σnσ and n ≥ 1, a T -approximation for op consists of:

• a new uninterpreted function symbol apop with ∫F (op) = ∫F (apop); and

• a mapping Aop : TermΣ
σ1
×· · · × Term

Σ
σn → 2For

1
T .

A T -approximation can therefore be written as a tuple (apop,Aop).

We can now de�ne possible properties of a T -approximation. This will be useful to prove

the correctness of our abstraction procedure later on

De�nition 5.1.2 (Sound T -approximation)
Given some theory T = (Σ, A) a T -approximation (apop,Aop) is sound i� for all x ∈
Dom1 (Aop) the following property holds:

For all T -interpretations I with I � Aop (x), it holds that I � apop (x)
.
= op (x).

De�nition 5.1.3 (Complete T -approximation)
Given some theory T = (Σ, A) a T -approximation (apop,Aop) is complete i� for all

x ∈ Dom (Aop) the following property holds:

For all T -interpretations I with I � apop (x)
.
= op (x), it holds that I � Aop (x).

1Dom is the domain of a given function. In this case Dom (Aop) = Term
Σ
σ1
×· · · × Term

Σ
σn

23

5. Re�nement approach

Example 5.1.4
For readability let f := mulBV2BV2BV2

be the 2-bit multiplication function as de�ned in

QF_BV.

Example for a sound approximation:

Af (x1, x2) := {apf (x1, x2)
.
= 0, (x1

.
= 0 ∨ x2

.
= 0)}

Example for a complete approximation:

Af (x1, x2) := {(x1
.
= 0 ∨ x2

.
= 0) =⇒ apf (x1, x2)

.
= 0}

Example for a sound and complete approximation:

Af (x1, x2) := {apf (x1, x2)
.
= f (x1, x2)}

Essentially a sound T -approximation describes an under-approximation and a complete

T -approximation describes an over-approximation of some function op. Using the notions

de�ned above we can now de�ne an abstraction scheme which iteratively re�nes an

over-approximation until the abstraction converges into an exact description of the given

function.

De�nition 5.1.5 (Abstraction Scheme)
Given some theory T = (Σ, A) and some function symbol op ∈ ΣF

of arity greater 0, a

T -abstraction scheme is a �nite totally ordered set of T -approximations

ASop = {
(
abop,A1

op

)
, . . . ,

(
abop,Akop

)
}

where:

• For every i ∈ J1, kK: Aiop is a complete T -approximation of op

• Cop (x) :=

(⋃
(· ,A)∈ASop

A (x)

)
is a sound T -approximation of op 2

Lemma 5.1.6 (Completeness of Abstraction Schemes)
Given someT -abstraction schemeASop = {

(
abop,A1

op

)
, . . . ,

(
abop,Akop

)
}with the properties

de�ned above, Cop is a complete T -approximation of op.

Proof. Let x be an arbitrary input vector for op.

For any T -interpretation I with I � apop (x)
.
= op (x) we know that by de�nition

I � Aiop (x) for all i ∈ J1, kK as all approximations Aiop are complete.

Therefore,

I �
⋃

(· ,A)∈ASop

A (x) (i.e., I � Cop (x))

which implies that Cop is a complete T -approximation, too.

2
Just like all previous T -approximations Cop is de�ned as Cop : TermΣ

σ1
×· · · × Term

Σ
σn
→ 2For

1
T for a

function symbol op of rank σ1· · ·σnσ

24

5.1. Abstraction scheme

Lemma 5.1.7 (Soundness/Completeness through Implication)
Given some theory T = (Σ, A) and a T -approximation (apop,Aop):

If for all interpretations I and all x ∈ Dom (Aop)

Aop (x) =⇒ apop (x)
.
= op (x)

then (apop,Aop) is sound.

If for all interpretations I and all x ∈ Dom (Aop)

apop (x)
.
= op (x) =⇒ Aop (x)

then (apop,Aop) is complete.

Proof. The proof is based on De�nitions 5.1.2 and 5.1.3.

Given for some formula the soundness (completeness) formula above holds for all I and x:

For any interpretation I where I 2 Aop (x) (I 2 apop (x)
.
= op (x)) the de�nition for

soundness (completeness) is already ful�lled.

In case I � Aop (x) (I � apop (x)
.
= op (x)) for some interpretation I , then we know

through the formula above that I � apop (x)
.
= op (x) (I � Aop (x)) which implies that

the approximation is, by de�nition, sound (complete).

Theorem 5.1.8 (Correctness of abstraction approach)
Let T = (Σ, A) be some theory with op ∈ ΣF

, ∫F (op) = σ1· · · σnσ and n ≥ 1.

Let further Φ be an arbitrary Σ-formula containing some function application op (x).

Given some term t ∈ Term
Σ
σ we de�ne Φ [op (x) 7→ t] as the formula where op (x) is

replaced by t in φ.

For any T -abstraction scheme ASop with function symbol abop the following property

holds:

There exists aT -interpretation IΦ which is aT -model for Φ i� there exists aT -interpretation

IA which is a T -model for

Ψ := Φ [op (x) 7→ abop (x)] ∧
∧

(· ,A)∈ASop

A (x)

Proof. The Theorem will be proved in 2 directions. For each direction we will construct a

suitable interpretation given the premise interpretation.

⇒ Let IΦ be a T -model for Φ.

We build a model IA by extending IΦ so that IA (abop (x)) evaluates to IΦ (op (x)).

As IA � apop (x)
.
= op (x), the completeness proof in Lemma 5.1.6 yields

IA � Aop (x).

Therefore

IA � Φ [op (x) 7→ abop (x)] ∧
∧

(· ,A)∈ASop

A (x)

25

5. Re�nement approach

⇐ Let IA be a T -model for Ψ.

The abstraction scheme de�nition states that

IA �
∧

(· ,A)∈ASop

A (x)

implies IA � apop (x)
.
= op (x) through the soundness property.

This implies that IA � Φ.

Abstraction approach In the following Sections abstraction schemes for three function

symbols of the QF_BV theory will be presented. In order to proof that the abstractions are

actually valid we will:

(A) Proof the completeness of any approximation proposed

(B) Proof the soundness of each abstraction scheme

The abstractions can then be used to build a decision procedure like the one described in

Algorithm 2. In a �rst step, the algorithm replaces all operations which should be re�ned

by their abstracted uninterpreted functions. Afterwards the instance is reevaluated in a

loop so long as the underlying SMT solver does not return unsat and the model returned

is incorrect. In each round further constraints from the abstraction schemes are added

to the instance. As shown in Theorem 5.1.8, (A) and (B) will be enough to prove that the

abstraction schemes yield correct results when used in such a decision procedure.

26

5.1. Abstraction scheme

Algorithm 2 Decision procedure for QF_BV abstractions. ADD_CLAUSES and SAT are calls

to the underlying SMT solver.

Require: φ ∈ For
1
QF _BV

abstractions← 〈〉
operations← 〈〉
for all op ∈ ΣF do
if op needs re�nement then
for all op (x) in φ do
φ← φ [op (x) 7→ abop (x)]
abstractions.push(ASop)
operations.push(op (x))

end for
end if

end for
ADD_CLAUSES(φ)
loop
r ←SAT()

if not r then
print unsat

else
correct← true
for all op (x) in operations do
if not op (x) assignment is correct then

correct← false
end if

end for
if correct then
print sat

else
for all AS in abstractions do
ADD_CLAUSES(AS.pop()) {Add next approximation to for AS to instance}

end for
end if

end if
end loop

27

5. Re�nement approach

5.2. Abstracting bvmul

The abstraction scheme for bvmul is devided into four stages: The �rst stage describes

the behaviour of bvmul for various common cases (like factors 0 and 1); the second stage

de�nes intervals for the result value given the intervals of the multiplication factors; the

third stage introduces relations between bvmul and other functions (speci�cally bvsdiv

and bvsrem); the fourth stage �nally adds full multiplication for certain intervals of the

factors.

Overflow detection The bvmul function essentially behaves just like “regular” integer

multiplication for any input value which does not produce an over�ow. For many of the

abstractions proposed in this Chapter it is therefore essential to detect over�ows in order

to �lter out these special cases. As we have already seen in Section 3.2, Boolector supports

a predicate to detect signed and unsigned multiplication over�ows. The issue with this

predicate is however that we have to calculate the �rst w+ 1 steps of multiplication given

bitvectors of width w. This is rather impractical when we only even want to abstract the

�rst w steps of multiplication. Therefore a predicate with no need for a multiplication

unit is needed. Such a predicate without a multiplication unit, while complete, might not

be sound - i.e., while every over�ow might be detected, this predicate might detect more

over�ows than actually exist. The methodology used here is based on [21] where another

approach for detecting over�ows by counting the leading bits (ones or zeros) is proposed:

The predicate ensures that there are at least w + 2 leading bits for any multiplication of

2 negative numbers and at least w + 1 leading bits for any other multiplication. While

excluding a few cases with no over�ows this predicate is never true for a pair of factors

which results in an over�ow. The corresponding predicate is de�ned in De�nition 5.2.1

(for a multiplication instance bvmul (a, b) with a and b bitvectors of width w) and will be

used on multiple occasions in the following Sections.

De�nition 5.2.1 (noov predicate)
We de�ne a Boolean function noov : {0, 1}w × {0, 1}w → {0, 1} as

noov (a, b) =
w−1∨
n=0

(
n∧
i=0

¬a[w − i− 1] ∧
w−1∧
i=n

¬b[i]

)
∨

w−1∨
n=0

(
n∧
i=0

a[w − i− 1] ∧
w−1∧
i=n

¬b[i]

)
∨

w−1∨
n=0

(
n∧
i=0

¬a[w − i− 1] ∧
w−1∧
i=n

b[i]

)
∨

w−2∨
n=0

(
n∧
i=0

a[w − i− 2] ∧
w−2∧
i=n

b[i] ∧ a[w − 1] ∧ b[w − 1]

)

28

5.2. Abstracting bvmul

5.2.1. Simple cases

For a multiplication instance abbvmul (x, y) of factors x and y with bitwidth w we de�ne

the following constraints:

(x
.
= 0)⇒ (abbvmul (x, y)

.
= 0) (5.1)

(y
.
= 0)⇒ (abbvmul (x, y)

.
= 0) (5.2)

(x
.
= 1)⇒ (abbvmul (x, y)

.
= y) (5.3)

(y
.
= 1)⇒ (abbvmul (x, y)

.
= x) (5.4)

(x
.
= −1)⇒ (abbvmul (x, y)

.
= −y) (5.5)

(y
.
= −1)⇒ (abbvmul (x, y)

.
= −x) (5.6)

noov(x, y)⇒ (¬x[w − 1] ∧ ¬y[w − 1])⇒ (abbvmul (x, y) ≥ 0) (5.7)

∧ (¬x[w − 1] ∧ y[w − 1])⇒ (abbvmul (x, y) ≤ 0) (5.8)

∧ (x[w − 1] ∧ ¬y[w − 1])⇒ (abbvmul (x, y) ≤ 0) (5.9)

∧ (x[w − 1] ∧ y[w − 1])⇒ (abbvmul (x, y) > 0) (5.10)

Equations (5.1) and (5.2) de�ne the multiplication cases where one factor is zero and (5.3)

as well as (5.4) de�ne the cases where one factor is 1. Furthermore (5.5) and (5.6) de�ne

the negation cases.

Additionally we can make statements about the result’s sign whenever we can be certain

that no over�ow is going to happen. For the cases where no over�ow happens the sign

behaviour of bitvector multiplication corresponds to the “common” sign behaviour and

can therefore be split into 3 distinct cases:

• Both factors are non-negative producing a non-negative result (5.7)

• Both factors are negative producing a positive result (5.10)

• One of the factors is negative producing a non-positive result (5.8), (5.9)

Additionally all cases where one of the two factors is a power of 2 can be covered by

constraints like (5.11) for all i ∈ J1, w − 1K and for x and y symmetrically:∧
j 6=i

¬x [j] ∧ x [i] =⇒
(
umul

(
x+

2 , y
+
2

) .
= shl

(
y+, i

))
(5.11)

where umul is the unsigned multiplication function and x+
2 as well as y+

2 are positive,

double bitwidth versions of x and y as detailed in the following Section. shl is the left

shift function.

Completeness The completeness of this abstraction is a direct consequence of Lemma

5.1.7 as it can be checked that all formulae presented above (which speci�cally omitted any

statements about di�cult over�ow cases) are implications of abbvmul (x, y)
.
= bvmul (x, y).

29

5. Re�nement approach

5.2.2. Most significant digit based intervals

Using the factors’ most signi�cant digits, intervals of the factors can be de�ned which in

turn can be used to assert intervals of the multiplication’s result. In a �rst step the signed

multiplication r := abbvmul (x, y) is transformed into its unsigned version with doubled

bitwidth by using the absolute values:

x+
2
.
= ITE(x[w − 1], y+

2
.
= ITE(y[w − 1],

− sext (x,w) − sext (y, w) ,

sext (x,w)) sext (y, w))

r′2
.
= ITE(x[w − 1]⊕ y[w − 1],

− umul(x+
2 , y

+
2),

umul(x+
2 , y

+
2))

ITE is the if-then-else function in SMT-LIB: If the �rst parameter is 1 the second parameter

is returned, otherwise the third parameter is returned. sext is the sign extension function.

By asserting equality of the multiplication result r and r′2 [w − 1 : 0] it is then possible

to reason about the results of r+
2 := umul(x+

2 , y
+
2) through bit shifting: If i is the most

signi�cant digit of x′ then 2i ≤ x′ < 2i+1
. Therefore 2i ∗ y′ ≤ r+

2 < 2i+1 ∗ y′. We now

de�ne a predicate msd(x, i) which is true i� the most signi�cant digit of x is i.

De�nition 5.2.2 (msd(x, i))
For some bitvector x of width w and an i ∈ J0, w − 1K we de�ne

msd(x, i) := x[i] ∧
w−1∧
j=i+1

¬x[j]

The previously presented results give rise to the following abstraction which must

distinguish over�ow from no-over�ow cases. For this we will initally use a double bitwidth

(i.e., 2 ∗ w width) unsigned multiplication function as well as double bit width lower

and upper bounds as de�ned below. We can then compare the necessary number of bits

depending on the result of noov: If an over�ow is possible we must compare the version

with 2 ∗ w bits, otherwise the w bit version can be used for comparison:

lower(a, b, n) :=

{
ITE(msd(a, 0), b, 0) , n = 0

ITE(msd(a, n), shl (b, n) , lower(a, b, n− 1)) , else

upper(a, b, n) :=

{
shl (b, 1) , n = 0

ITE(msd(a, n), shl (b, n+ 1) , upper(a, b, n− 1)) , else

noov(x′, y′)⇒
lower(x+

2 , y
+
2 , w)[w − 1 : 0] ≤ r+

2 [w − 1 : 0] < upper(x+
2 , y

+
2 , w)[w − 1 : 0]

noov(x′, y′)⇒
lower(y+

2 , x
+
2 , w)[w − 1 : 0] ≤ r+

2 [w − 1 : 0] < upper(y+
2 , x

+
2 , w)[w − 1 : 0]

30

5.2. Abstracting bvmul

¬noov(x′, y′)⇒lower(x+
2 , y

+
2 , w) ≤ r+

2 < upper(x+
2 , y

+
2 , w)

¬noov(x′, y′)⇒lower(y+
2 , x

+
2 , w) ≤ r+

2 < upper(y+
2 , x

+
2 , w)

Note that while lower and upper seem to be recursive functions here they can be unrolled

into consecutive ITE statements when adding the bounds to the instance to easen the

solver’s decision process.

Completeness Through the distinction between over�ow and no-over�ow cases the

various equations can be regardes as “normal” multiplication disregarding over�ows.

Therefore, it can be checked that these constraints are direct implications of abbvmul (x, y)
.
=

bvmul (x, y). This approximation is complete according to Lemma 5.1.7.

5.2.3. Relations to other functions

Additionally to the previously described abstractions which all focused on relations

between inputs and outputs of the speci�c function we can also look at relations between

the given instruction invocation abbvmul(·, ·) and other invocations of the same or other

instructions. This provides the solver with more high-level information and can therefore

be useful in cases where relations between multiple instruction calls already lead to a

contradiction without looking at the implementation details of the instructions.

For the multiplication instruction abbvmul(x2, y2), with x2 and y2 the double bitwidth (2 ∗
w) versions of x and y, we propose the following abstractions, which become particularly

interesting when combined with similar abstractions for the bvsrem (Section 5.4) and

bvsdiv (Section 5.3) function:

abbvmul(x2, y2)
.
=abbvmul(y2, x2)

x2
.
= 0 ∨ y2

.
=abbvsdiv(abbvmul(x2, y2), x2)

y2
.
= 0 ∨ x2

.
=abbvsdiv(abbvmul(x2, y2), y2)

For every bit width w′ < 2 ∗ w which appears in a given problem instance and its

abstractions we can further assert that

abbvmul(x2, y2)[w′ − 1 : 0]
.
= abbvmul(x2[w′ − 1 : 0], y2[w′ − 1 : 0])

and

abbvmul(x2, y2)[w′ − 1 : 0]
.
= abbvmul(y2[w′ − 1 : 0], x2[w′ − 1 : 0])

and for

x′ := sext

(
x2

[⌊
w′

2

⌋
: 0

]
, w′ −

⌊
w′

2

⌋)
y′ := sext

(
y2

[⌊
w′

2

⌋
: 0

]
, w′ −

⌊
w′

2

⌋)
we assert that

abbvmul(x
′, y′)

.
= abbvmul(y

′, x′)

31

5. Re�nement approach

as well as

y′
.
= 0 ∨ x′ .= abbvsdiv (abbvmul(x

′, y′), y′)

and

x′
.
= 0 ∨ y′ .= abbvsdiv (abbvmul(x

′, y′), x′)

Essentially all these relations between various multiplication and division applications are

all based on properties de�ned in the C standard [19] for multiplication and division.

The only challenge of this abstraction is to formulate the constraints so that they are even

complete for over�ow cases.

A naive approach would simply encode the constraints in single bitwidth w. This however,

turns out to be problematic as the properties listed above do not hold for over�ow cases

that (according to the C standard) result in unde�ned behaviour and most certainly not in

above constraints being respected. Therefore, we use an approach with doubled bitwidth

2 ∗ w while encoding the constraints.

Completeness The completeness of this abstraction is a direct consequence of all assertions

being well-known properties for machine multiplication and division also de�ned in the

C standard. As we avoid all over�ow cases through the use of doubled bitwidth, the

properties hold for any input combination.

5.2.4. Full multiplication

In a last step full multiplication on a per-interval basis is added as constraint. We assume a

SMT instance containing some multiplication bvmul (x, y). If the instance is still satis�able

after having been passed through re�nement steps 5.2.1 to 5.2.3, the solver returns a

counterexample with assignments for x and y. We then look up the most signi�cant bit i
of x’s assignment and assert that:

msd (x, i) =⇒ abbvmul (x, y)
.
= bvmul (x, y)

Completeness and Soundness For a multiplication of bitwidth w the approximation is

complete and it even becomes sound once this assertion has been made for all i ∈ J0, w−1K.

It is also to see that the maximum number of necessary re�nement steps is bounded by w.

5.3. Abstracting bvsdiv

Just like multiplication, bvsdiv is a rather costly function in terms of formulae needed for

its representation. Furthermore, concepts very similar to those used for abstracting bvmul

can be reused as an abstraction approach for bvsdiv. We therefore present a very similar

four step abstraction approach for bvsdiv in this Section.

Note that bvsdiv can only over�ow in the case of dividing the minimum integer (10w−1
in

binary) by −1. In SMT-LIB this over�ow returns the minimum integer.

32

5.3. Abstracting bvsdiv

5.3.1. Simple cases

For some division bvsdiv (x, y) of bitwidth w a certain number of simple cases can be

encoded as a �rst abstraction step:

(y
.
= 0) =⇒ abbvsdiv (x, y)

.
= ITE (a < 0, 1, x) (5.12)

(y
.
= 1) =⇒ abbvsdiv (x, y)

.
= x (5.13)

(y
.
= x) =⇒ abbvsdiv (x, y)

.
= 1 (5.14)

(y
.
= −1) =⇒ abbvsdiv (x, y)

.
= −x (5.15)

−y < x < y =⇒ abbvsdiv (x, y)
.
= 0 (5.16)

The �rst assertion (5.12) implements the SMT-LIB standard for divisions by zero. The other

assertions cover various simple cases of division with (5.15) also covering the over�ow

case mentioned above (this is because−(1 ◦ 0w−1) = 1 ◦ 0w−1
). Furthermore we can again

make use of cases where y is a power of two by asserting that for all i ∈ J1, w − 1K:∧
j 6=i

¬x [j] ∧ x [i] =⇒
(
udiv

(
x+, y+

) .
= ashr

(
x+, i

))
(5.17)

With udiv being the unsigned division function and x+
as well as y+

being the positive

versions of x and y as detailed in the next Section. ashr is the arithmetic right shift

function.

Completeness The approximation is complete by Lemma 5.1.7 as the formulae above are

implications of abbvsdiv (x, y)
.
= bvsdiv (x, y).

5.3.2. Most significant digit based intervals

In correspondence to the abstraction approach for bvmul, we can make use of the most

signi�cant bit of the divisor y for some division bvsdiv (x, y). The division problem will

�rst be transformed into its unsigned version:

x+ .
= ITE(x[w − 1], y+ .

= ITE(y[w − 1],

− x − y,
x) y)

r′
.
= ITE(x[w − 1]⊕ y[w − 1],

− udiv(x+, y+),

udiv(x+, y+))

Just like for bvmul we then assert that

abbvsdiv (x, y)
.
= r′

33

5. Re�nement approach

so we can then assert constraints for r+ .
= udiv(x+, y+):

lower(a, b, n) :=

{
0 , n = 0

ITE(msd(b, n), ashr (a, n+ 1) , lower(a, b, n− 1)) , else

upper(a, b, n) :=

{
a , n = 0

ITE(msd(b, n), ashr (a, n) , upper(a, b, n− 1)) , else

lower(x+, y+, w) < r+ ≤ upper(x+, y+, w)

This assertion de�nes an interval for the value of r+
(and through r+

for the value of

abbvsdiv (x, y)) depending on the most signi�cant digit of y.

Completeness The completeness of this abstraction is a direct result of the formulae

above being an implication of abbvsdiv (x, y)
.
= bvsdiv (x, y).

5.3.3. Relations to other functions

Due to the di�culties of over�ows and relation assertions explained in Subsection 5.2.3,

double bitwidth variables x2 and y2 will be used in the following assertions
3
. Note however

that as explained earlier the division itself only over�ows in a single case already covered

in Subsection 5.3.1.

For divison the following two assertions are being added (again in accordance with the C

standard):

abbvsdiv (x, y)
.
=abbvsdiv (x2, y2) [w − 1 : 0]

x2
.
=abbvmul (abbvsdiv (x2, y2) , y2) + abbvsrem (x2, y2)

Completeness The proof is analog to the proof in Subsection 5.2.3.

5.3.4. Full division

In a last step (also parallel to bvmul) division is added one interval at a time as explained

in Subsection 5.2.4 for the multiplication case. In this case the intervals are based on the

value of the dividend x. As for bvmul, the soundness of this abstraction scheme is a direct

consequence of the assertions made in this step.

5.4. Abstracting bvsrem

Due to its rareness in benchmarks
4

only a single abstraction layer has been added for this

function. Once again with double bitwidth as explained in Section 5.2.3, we assert the

3
These variables are sign extended

4
On the one hand its rareness makes it harder to evaluate the performance of abstractions on the other

hand abstractions are less likely to have a big impact on the overall performance of the solver.

34

5.4. Abstracting bvsrem

relations between bvsrem and other functions:

abbvsrem (x, y)
.
=abbvsrem (x2, y2) [w − 1 : 0]

x2
.
=abbvmul (abbvsdiv (x2, y2) , y2) + abbvsrem (x2, y2)

In the following re�nement step the full remainder constraint

abbvsrem (x, y)
.
= bvsrem (x, y)

is added.

The proof of completeness for the �rst abstraction is analog to the proof in Subsection 5.2.3.

The proof of soundness of the abstraction scheme for bvsrem is trivial after the second

assertion as abbvsrem (x, y)
.
= bvsrem (x, y) =⇒ abbvsrem (x, y)

.
= bvsrem (x, y).

35

6. Implementation

As the focus of this work lay on researching which abstractions are e�ective in reducing the

solvers runtime and not so much on building an improved solver, the abstraction re�nement

procedure is built as a layer on top of Boolector. In order enable a fast evaluation of the

abstraction approaches, the prototype is implemented in Python. To increase readibility,

we will refer to the prototype as “Ablector” which stands for Abstracted Boolector
Generally speaking there were 2 pathways we could have taken for the experiments:

Either implement the abstraction re�nement procedures directly into an existing SMT

solver or build a layer on top of some SMT solver which then implements the abstraction

re�nement procedure. The big advantage of an implementation directly within an SMT

solver would have been the performance enhancements through optimizations and integrations

only possible from within (e.g. working directly inside the over- and under-approximation

loop of Boolector described in Section 3.2). The disadvantage however would have been a

much slower evaluation process due to the enhanced complexity when implementing new

features in a project similarly scaled to Boolector.

Architecture While Boolector o�ers a Python Interface (pyboolector) on its own, this

Python interface is di�cult to extend when it comes to parsing SMT-LIB �les as pyboolector

moves directly into C-level parsing when evaluating SMT-LIB �les and only returns to the

Python level when the solver’s result can be returned. Therefore another SMT-LIB parser

was necessary to allow for the abstraction re�nement to be implemented in Python. This

resulted in the architecture presented in Figure 6.1 which will be explained below.

37

6. Implementation

C Level

Python Level

Formula SAT/UNSAT

PySMT:

SMT-LIB parsing

Ablector: Abstraction re�nement

Boolector: Incremental SMT solving

Re�nement loop
SMT instructions

abstracted

formulae

SAT/UNSAT

Figure 6.1.: The overall architecture of the prototype implemented

6.1. PySMT

The PySMT Python library [17] is used as a parser. The library allows SMT-LIB parsing

and integrates interfaces for various SMT-solvers including Boolector. The library made it

possible to enhance the Boolector interface in a way that allowed the implementation of

the abstraction re�nement procedure.

The downside of this library is its failing to parse a few benchmarks containing certain

bitshift operations and the relatively slow parsing time in comparison with Boolector’s

parser
1
.

6.2. Boolector

As underlying SMT solver Boolector [9] is used as it won both the QF_ABV and QF_BV main

track at SMT-COMP 2018 [18]. The solver integrates with PySMT through its Python

interface pyboolector and supports uninterpreted functions. For the implementation of

the re�nement loop the solver’s python interface is extended through a subclass rewriting

certain methods of pyboolector (like the method for multiplication and the method for

signed division and remainder) in order to implement the abstraction procedures. As

PySMT integrates the invocation of pyboolector’s methods into its own parsing procedure

this methodology resulted in a setup allowing to easily test out abstractions.

1
Please note that this result was found using some very basic tracing techniques and therefore might

not give a full picture of PySMT’s parsing performance. In any case the parsing times of Boolector

and PySMT seemed to di�er su�ciently for this to potentially have an impact on the performance

comparisons later on.

38

6.3. Abstraction node managment

As already mentioned earlier Boolector makes heavy use of various optimization

techniques before bit blasting. Oftentimes Boolector can actually solve SMT instances

entirely without bit blasting. As these optimization techniques are rather quick in runtime,

we actually run them on every instance before the abstraction re�nement procedure to

check if these procedures already �nd the instance to be unsati�able. Only if the instance is

not yet found to be unsatis�able by these procedures, we continue and run our abstraction

procedure on the original (that is, not the optimized) version of the SMT instance.

6.3. Abstraction nodemanagment

Upon invocation of a method like Mul(·, ·) the pyboolector interface returns an object

representing the result of the multiplication function which can again be passed into other

pyboolector methods. The extending subclass keeps a list of so called abstraction nodes.
Upon invocation of a rewritten method like Mul(·, ·) a new abstraction node is added to

this list. The abstraction node of some function (e.g. Mul(·, ·)) contains the entire logic

necessary in the abstraction re�nement steps. Among other methods any abstraction node
must therefore contain the following methods:

• isExact()
Returns whether the given node is already sound.

• isCorrect()
Returns whether the current assignment of the given node is correct (i.e., a correct

result of the function given the current input assignments).

• refine()
Prepares the assertions necessary for the next re�nement step.

• doAssert()
Adds the assertions prepared in refine() to the solver instance.

This allows an easy abstraction of any function and makes the abstraction managment

of the various functions independent from each other. The re�nement loop can then call

these methods on each abstraction node as needed.

Once an abstraction node returns that it is exact (i.e., both complete and sound), it is

removed from the list of abstraction nodes and no longer visited in the re�nement steps.

39

7. Evaluation

In the following Sections, the solving time with (Ablector) and without (Boolector) abstraction

is compared. For details on the experimental setup as well as measures taken to secure the

reproducibility of the results see Appendix A.

7.1. Timemeasurements

Like we already mentioned in the Section 6.1, the parsing engine of PySMT is notably

slower than the parsing engine of Boolector. Comparing the real time (i.e., clock time) of

the two competitors would therefore result in a very biased performance comparison as

we are trying to benchmark the abstractions and not the parsing.

We therefore decided to only compare the CPU clock time of certain operations. Speci�cally,

we compare the CPU clock time
1

of Boolector’s SMT-LIB check-sat call against the

summed up CPU clock time of all invocations to rewritten procedures in Ablector including

its own check-sat call. This will produce a more realistic comparison of the abstraction’s

performance. Note that we are over-approximating the time Ablector takes in this

comparison as we are adding the processing time for abstracted functions (e.g. Mul(·, ·))
which are not considered for Boolector. However, those time measurements are in most

cases negligible in comparison to the time for the check-sat call.

This time measurement will usually be referred to as satpart as it is essentially measuring

the time the solver takes to produce an (un)sat result without parsing.

7.2. Benchmarks set

Initially, the benchmark set described in Section 4 was evaluated. In order to avoid

over�tting the abstractions for this benchmarks, we later on evaluated the abstraction

approach using a subset of the benchmarks used at SMT-COMP 2018 [18]. Speci�cally, we

extract all benchmarks containing bvmul, bvsdiv and bvsrem function applications with

the most appearances in the benchmark set being bvmul instructions. The benchmark set

contains 15340 unsatis�able instances and 4605 satis�able instances. The focus of this

work lies on the unsatis�able instances. 76 unsatis�able and 79 satis�able benchmarks

had to be omitted due to problems with the PySMT parser explained in Section 6.1.

1
We chose the CPU clock time as it can be measured through the same uni�ed interface in both Python

and C with comparable results. As the tasks in this program Section are heavily CPU-bound with very

little IO operations taking place, this measurement can still be considered realistic.

41

7. Evaluation

ufReuse1 ufReuse10 ufReuseInf

0

200

400

600

800

1,000

#
u

n
s
o

l
v
e
d

i
n

s
t
a
n

c
e
s

UNSAT

SAT

Figure 7.1.: Number of unsolved instances (both SAT and UNSAT) for fresh UF on every

appearance (ufReuse1), fresh UF on every tenth appearance (ufReuse10) and

the same UF for all appearances (ufReuseInf)

7.3. Reuse of uninterpreted functions

In our abstraction scheme any abstracted function is replaced by an application of some

uninterpreted function (UF). For instances containing multiple invocations of the same

abstracted function we can choose whether to reuse the same uninterpreted function for

every appearance, or whether to use a “fresh” uninterpreted function for each appearance.

This decision potentially has a big impact on the overall performance of the solver: On

the one hand using a fresh function for each appearance reduces the number of Lemmas

necessary for Boolector to bring the function results in a consistent state. On the other hand

using the same function every time puts in place another - potentially useful - constraint

on the function’s results (i.e., it makes sure that the results are at least consistent for the

same input even though they might still be wrong).

Figure 7.1 gives an overview of the number of unsolved instances with a fresh UF for

each appearance (ufReuse1), the same UF for all appearances (ufReuseInf) and a fresh UF

for every tenth appearance (ufReuse10). We can see that the ufReuse1 variant performs

best and solves the largest number of instances. We therefore chose to procede with

ufReuse1 for the further analysis.

7.4. Unsatisfiable Instances

The benchmark set considered contained a total of 15264 unsatis�able instances. It is

worth noting that 9404 of those instances are solved by Boolector without the use of a

SAT solver at all leaving 5860 instances to be solved by the SAT solver. A �rst comparison

of Boolector and Ablector is given in Figure 7.2 and 7.3. While the plots show that for

certain instances Ablector seems to be slower than Boolector, we can also see a number

of instances for which Ablector �nds a solution while Boolector times out. Figure 7.3

42

7.4. Unsatis�able Instances

Figure 7.2.: satpart of Boolector vs satpart of Ablector in seconds for unsatis�able

instances

only shows the instances which had a runtime of more than 1s for either solver, thereby

removing all time di�erences irrelevant to us.

Although we can very well evaluate the di�erences in running time in the two Figures,

the plots lack essential information on the number of benchmarks solved by either solver.

A better analysis of the number of instances (un)solved by Boolector and Ablector can

be found in Table 7.1: Here we see that Ablector, using the abstractions presented above,

is able to solve 43 instances more than Boolector. Note that in numbers (not looking at

overlap etc.) this is about 30% of the instances for which Boolector times out.

Boolector

unsolved solved

Ablector

unsolved 80 16 96

solved 59 15109 15168

139 15125 15264

Table 7.1.: Number of unsatis�able instances solved by Boolector and Ablector

For any appearance of the bvmul and bvsdiv function within an instance we furthermore

tracked the �nal abstraction level. Abstraction level 0 corresponds to the simple cases,

level 1 corresponds to the msd based intervals, level 2 corresponds to the relations between

43

7. Evaluation

Figure 7.3.: satpart of Boolector vs satpart of Ablector in seconds for unsatis�able

instances with satpart larger 1s in either dimension

44

7.4. Unsatis�able Instances

functions and level 3 corresponds to the interval-wise full multiplication/division. If

abstraction level 3 was reached for some instance, we further track the number of intervals

added. This is of interest as it gives an estimate on the necessity of each re�nement step:

For example, if a re�nement level would never appear as the �nal re�nement step for an

unsatis�able instance, it is very unlikely that this abstraction is of much use. However

looking at Figure 7.4, we see that the �nal abstraction levels are somewhat distributed

across the various abstraction steps and that all abstractions therefore help in solving

certain instances. Further, Figure 7.5 shows that for many instances full multiplication

for a single interval (or very few intervals) are enough to produce the unsat result. This

implies that the incremental, last re�nement level also helps in solving certain instances.

(a) bvmul (b) bvsdiv

Figure 7.4.: Final abstraction level of function applications: 0 are simple cases, 1 are bit

shifts, 2 are UF relations and 3 is the interval-wise full multiplication/division

step.

(a) bvmul (b) bvsdiv

Figure 7.5.: Number of intervals added for multiplication/division in the �nal abstraction

step.

45

7. Evaluation

Figure 7.6.: satpart of Boolector vs satpart of Ablector in seconds for satis�able instances

7.5. Satisfiable Instances

For satis�able instances on the other hand, Abletor’s performance is worse than Boolector’s:

As we can see in Figure 7.6 and Table 7.2, Boolector is able to solve a lot of instances Ablector

cannot currently solve and the running time Ablector takes for the solved instances cannot

make up for this �aw. It is also worth noting that, while about 500 timed out instances

got stuck in the �rst re�nement round, the rest of the timed out instances are evenly

distributed across all re�nement rounds.

While bounding the running time of each re�nement round by an upper limit could

avoid the problem of instances getting stuck in a certain step, we expect that the abstraction

scheme’s performance could further be improved in future work by integrating the

abstractions directly into a solver like Boolector instead of building them as a layer on

top. This would allow to make better use of the under-approximation techniques that are

completely ignored for most abstraction steps in the current abstraction scheme.

46

7.5. Satis�able Instances

Boolector

unsolved solved

Ablector

unsolved 579 474 1053

solved 73 3400 3473

652 3874 4526

Table 7.2.: Number of satis�able instances solved by Boolector and Ablector

47

8. Conclusion

In this work, we introduced a novel approach to solving quanti�er free bitvector problems

in SMT-LIB’s QF_BV theory. The approach is based on abstraction methodologies previously

used for various other problems in logic and speci�cally in SMT. On the one hand, we

presented numerous abstractions for 3 comparatively costly funcitons of the bitvector

theory, on the other hand, we proposed a simple theoretical framework allowing a proof

of correctness for the presented abstractions. While we saw that the presented approach

performs better than Boolector in deciding unsatis�able bitvector problems, solving 43

instances more, the implemented prototype is not yet competitive for satis�able instances.

This is of course in some way a natural result, as over-approximations usually improve

the solver runtime on unsatis�able (and not on satis�able) instances.

FutureWork With the abstraction’s correctness proved and the abstraction’s performance

evaluated through the current prototype, one could now implement the abstraction scheme

directly into a SMT solver like Boolector making use of interleaved under- and over-

approximations. We expect that this might enhance the solver’s performance su�ciently

to be competitive for both satis�able and unsatis�able instances. Additionally, a time limit

for each re�nement round could be introduced in order to avoid cases where the solver

gets stuck in some speci�c re�nement step. For this, a detailed parameter analysis will

be necessary to �nd a time limit that keeps the abstraction steps e�ective while avoiding

dead ends. Finally, it is left to investigate whether a don’t care reasoning strategy similar

to the one used for Lemmas on Demand in Boolector [26] could improve the abstraction

re�nement procedure’s performance.

49

Bibliography

[1] Tomáš Balyo, Marijn J. H. Heule, and Matti Järvisalo, eds. Proceedings of SAT
Competition 2017: Solver and Benchmark Descriptions. Publication series B, Report

B-2017-1. University of Helsinki, Department of Computer Science, 2017.

[2] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satis�ability Modulo Theories
Library (SMT-LIB). www.SMT-LIB.org. 2016.

[3] Clark Barrett and Cesare Tinelli. “Satis�ability Modulo Theories”. In: Handbook
of Model Checking. Ed. by Edmund M. Clarke et al. Cham: Springer International

Publishing, 2018, pp. 305–343. isbn: 978-3-319-10575-8. doi: 10.1007/978-3-319-

10575-8_11.

[4] Armin Biere. “CaDiCaL, Lingeling, Plingeling, Treengeling, YalSAT Entering the

SAT Competition 2017”. In: Proc. of SAT Competition 2017 – Solver and Benchmark
Descriptions. Ed. by Tomáš Balyo, Marijn Heule, and Matti Järvisalo. Vol. B-2017-1.

Department of Computer Science Series of Publications B. University of Helsinki,

2017, pp. 14–15.

[5] Armin Biere. runlim. Website. url: http://fmv.jku.at/runlim.

[6] Armin Biere, Keijo Heljanko, and Siert Wieringa. AIGER 1.9 And Beyond. Tech. rep.

FMV Reports Series, Institute for Formal Models and Veri�cation, Johannes Kepler

University, Altenbergerstr. 69, 4040 Linz, Austria, 2011.

[7] Thierry Boy de la Tour and Mnacho Echenim. Éléments de Logique pour le cours de 2
ème année Ensimag: Fondements de Logique pour l’Informatique. 2015.

[8] Robert Brummayer. “E�cient SMT solving for bit vectors and the extensional theory

of arrays”. PhD thesis. Johannes Kepler University of Linz, 2010. isbn: 978-3-85499-

707-8.

[9] Robert Brummayer and Armin Biere. “Boolector: An E�cient SMT Solver for Bit-

Vectors and Arrays”. In: Tools and Algorithms for the Construction and Analysis of
Systems, 15th International Conference, TACAS 2009, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2009, York, UK, March 22-29,
2009. Proceedings. 2009, pp. 174–177. doi: 10.1007/978-3-642-00768-2_16.

[10] Robert Brummayer and Armin Biere. “Lemmas on Demand for the Extensional

Theory of Arrays”. In: JSAT 6.1-3 (2009), pp. 165–201. url: https://satassociation.

org/jsat/index.php/jsat/article/view/74.

51

https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
http://fmv.jku.at/runlim
https://doi.org/10.1007/978-3-642-00768-2_16
https://satassociation.org/jsat/index.php/jsat/article/view/74
https://satassociation.org/jsat/index.php/jsat/article/view/74

Bibliography

[11] Randal E. Bryant et al. “Deciding Bit-Vector Arithmetic with Abstraction”. In: Tools
and Algorithms for the Construction and Analysis of Systems, 13th International
Conference, TACAS 2007, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2007 Braga, Portugal, March 24 - April 1, 2007, Proceedings.
2007, pp. 358–372. doi: 10.1007/978-3-540-71209-1_28.

[12] Arun Chaganty et al. “Combining Relational Learning with SMT Solvers Using

CEGAR”. In: Computer Aided Veri�cation. Ed. by Natasha Sharygina and Helmut

Veith. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 447–462. isbn: 978-

3-642-39799-8.

[13] Edmund M. Clarke et al. “Counterexample-Guided Abstraction Re�nement”. In:

Computer Aided Veri�cation, 12th International Conference, CAV 2000, Chicago, IL,
USA, July 15-19, 2000, Proceedings. 2000, pp. 154–169. doi: 10.1007/10722167_15.

[14] Martin Davis, George Logemann, and Donald W. Loveland. “A machine program for

theorem-proving”. In: Commun. ACM 5.7 (1962), pp. 394–397. doi: 10.1145/368273.

368557.

[15] Nils Froleyks, Tomas Balyo, and Dominik Schreiber. “PASAR—Planning as Satis�ability

with Abstraction Re�nement”. In: Twelfth Annual Symposium on Combinatorial
Search. 2019.

[16] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1990. isbn:

0716710455.

[17] Marco Gario and Andrea Micheli. “PySMT: a solver-agnostic library for fast prototyping

of SMT-based algorithms”. In: SMT Workshop 2015. 2015.

[18] Matthias Heizmann et al. SMTCOMP 2018. Website.url: http://smtcomp.sourceforge.

net/2018/.

[19] ISO14882:2011(E) C++. Standard. Geneva, CH: International Organization for Standardization,

Sept. 2011.

[20] Michael J. Schulte et al. “Combined Unsigned and Two’s Complement Saturating

Multipliers”. In: Proceedings of SPIE - The International Society for Optical Engineering
4116 (Sept. 2000). doi: 10.1117/12.406496.

[21] Henry S. Warren Jr. Hacker’s Delight, Second Edition. Pearson Education, 2013. isbn:

0-321-84268-5. url: http://www.hackersdelight.org/.

[22] Gergely Kovásznai, Andreas Fröhlich, and Armin Biere. “On the Complexity of

Fixed-Size Bit-Vector Logics with Binary Encoded Bit-Width”. In: 10th International
Workshop on Satis�ability Modulo Theories, SMT 2012, Manchester, UK, June 30 - July
1, 2012. 2012, pp. 44–56. url: http://www.easychair.org/publications/paper/

145348.

[23] João P. Marques-Silva and Sharad Malik. “Propositional SAT Solving”. In: Handbook
of Model Checking. Ed. by Edmund M. Clarke et al. Cham: Springer International

Publishing, 2018, pp. 247–275. isbn: 978-3-319-10575-8. doi: 10.1007/978-3-319-

10575-8_9.

52

https://doi.org/10.1007/978-3-540-71209-1_28
https://doi.org/10.1007/10722167_15
https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/368273.368557
http://smtcomp.sourceforge.net/2018/
http://smtcomp.sourceforge.net/2018/
https://doi.org/10.1117/12.406496
http://www.hackersdelight.org/
http://www.easychair.org/publications/paper/145348
http://www.easychair.org/publications/paper/145348
https://doi.org/10.1007/978-3-319-10575-8_9
https://doi.org/10.1007/978-3-319-10575-8_9

[24] João P. Marques-Silva and Karem A. Sakallah. “GRASP: A Search Algorithm for

Propositional Satis�ability”. In: IEEE Trans. Computers 48.5 (1999), pp. 506–521. doi:

10.1109/12.769433. url: https://doi.org/10.1109/12.769433.

[25] Aina Niemetz, Mathias Preiner, and Armin Biere. “Boolector 2.0”. In: JSAT 9 (2014),

pp. 53–58. url: https://satassociation.org/jsat/index.php/jsat/article/

view/120.

[26] Aina Niemetz, Mathias Preiner, and Armin Biere. “Turbo-charging Lemmas on

demand with don’t care reasoning”. In: Formal Methods in Computer-Aided Design,
FMCAD 2014, Lausanne, Switzerland, October 21-24, 2014. IEEE, 2014, pp. 179–186.

doi: 10.1109/FMCAD.2014.6987611.

[27] Mathias Preiner, Aina Niemetz, and Armin Biere. “Lemmas on Demand for Lambdas”.

In: Proceedings of the Second International Workshop on Design and Implementation of
Formal Tools and Systems, Portland, OR, USA, October 19, 2013. Ed. by Malay K. Ganai

and Alper Sen. Vol. 1130. CEUR Workshop Proceedings. CEUR-WS.org, 2013. url:

http://ceur-ws.org/Vol-1130/paper_7.pdf.

53

https://doi.org/10.1109/12.769433
https://doi.org/10.1109/12.769433
https://satassociation.org/jsat/index.php/jsat/article/view/120
https://satassociation.org/jsat/index.php/jsat/article/view/120
https://doi.org/10.1109/FMCAD.2014.6987611
http://ceur-ws.org/Vol-1130/paper_7.pdf

A. Reproducibility

So�ware For alle experiments a modi�ed version of Boolector 3.0.1-pre is used. More

speci�cally we modi�ed commit f689fbbfe820392d35e26be368f9d87d2dbdb037 so that

we could measure the time of the check-sat instruction. This can be found in branch

sat-time-measure of https://github.com/samysweb/boolector. As underlying SAT-solver

Lingeling [4] with version bcj 78ebb8672540bde0a335aea946bbf32515157d5a is used. All

software packages were compiled using the provided cmake scripts which have the highest

optimization levels enabled using gcc in version (Ubuntu 5.4.0-6ubuntu1 16.04.10)

5.4.0 20160609.

For the �nal experiments presented in Chapter 7 Ablector is used in the version available in

commit 79584caeb4b7ea27ac3e80153b167c36d434232e at https://github.com/samysweb/

ablector.

Machine All experiments were executed on a cluster of 20 identical compute nodes each

housing 2 Intel Xeon E5430 @ 2.66GHz CPUs and a total of 32GB of RAM. The SMT

benchmark �les were stored on a RAID system connected to the cluster.

Benchmark execution 2 jobs were run in parallel on each compute node with the timeout

set to 1200 seconds this posed no caching issues as they were run on seperate CPU sockets

1
. For time surveillance and measurements we used the runlim utility [5]. All benchmarking

scripts and the log results can be obtained at https://github.com/samysweb/BA-experiments.

1
Early on we ran up to 8 experiments on a single node to make use of the available cores however this

seemed to produce caching issues slowing down the experiment times

55

https://github.com/samysweb/boolector
https://github.com/samysweb/ablector
https://github.com/samysweb/ablector
https://github.com/samysweb/BA-experiments

B. List of Figures

3.1. Interleaving over- and under-approximation techniques in Boolector as

presented in [8] . 15

6.1. The overall architecture of the prototype implemented 38

7.1. Number of unsolved instances (both SAT and UNSAT) for fresh UF on every

appearance (ufReuse1), fresh UF on every tenth appearance (ufReuse10)

and the same UF for all appearances (ufReuseInf) 42

7.2. satpart of Boolector vs satpart of Ablector in seconds for unsatis�able

instances . 43

7.3. satpart of Boolector vs satpart of Ablector in seconds for unsatis�able

instances with satpart larger 1s in either dimension 44

7.4. Final abstraction level of function applications: 0 are simple cases, 1 are bit

shifts, 2 are UF relations and 3 is the interval-wise full multiplication/division

step. 45

7.5. Number of intervals added for multiplication/division in the �nal abstraction

step. 45

7.6. satpart of Boolector vs satpart of Ablector in seconds for satis�able

instances . 46

57

	Acknowledgments
	Abstract
	Zusammenfassung
	Introduction
	Preliminaries
	Basic boolean algebra and notation
	Satisfiability and SAT solving
	Satisfiability modulo theory
	The SMT language
	Theories

	SMT solving
	Eager SMT solving
	Lazy SMT Solving

	Related Work
	Counterexample-guided abstraction refinement (CEGAR)
	Boolector and Lemmas on Demand
	UCLID

	Solving "difficult" SMT instances
	Naive decomposition
	Less naive decomposition
	The instance's core
	More information: values and intervals
	More information: structure

	Refinement approach
	Abstraction scheme
	Abstracting bvmul
	Simple cases
	Most significant digit based intervals
	Relations to other functions
	Full multiplication

	Abstracting bvsdiv
	Simple cases
	Most significant digit based intervals
	Relations to other functions
	Full division

	Abstracting bvsrem

	Implementation
	PySMT
	Boolector
	Abstraction node managment

	Evaluation
	Time measurements
	Benchmarks set
	Reuse of uninterpreted functions
	Unsatisfiable Instances
	Satisfiable Instances

	Conclusion
	Bibliography
	Reproducibility
	List of Figures

