
Towards Combining the Cognitive Abilities of
Large Language Models with the Rigor of

Deductive Progam Verification⋆

Bernhard Beckert1[0000−0002−9672−3291], Jonas Klamroth2[0000−0002−8013−9453],
Wolfram Pfeifer1[0000−0002−9478−9641], Patrick Röper1, and Samuel

Teuber1[0000−0001−7945−9110]

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
{beckert, wolfram.pfeifer, teuber}@kit.edu

2 FZI Research Center for Information Technology, Karlsruhe, Germany
klamroth@fzi.de

Abstract. Recent investigations hint at the ability of large language
models (LLMs) to generate formal specifications for given program code.
In this work, we systematically discuss and categorize different use cases
and application scenarios that combine specification synthesis via LLMs
with deductive program verification. We present preliminary quantita-
tive experiments on the capabilities of LLMs to generate correct specifi-
cations. To this end, we use a prototypical integration of GPT (versions
3.5 and 4o) with the deductive program verifier KeY and the bounded
model checker JJBMC. We evaluated our prototype on a set of Java
programs that are partially annotated with specifications written in the
Java Modeling Language (JML). We show that GPT 4o generates correct
annotations in approximately half of all instances across the investigated
scenarios. For the case of faulty specifications, we investigate how a feed-
back loop can help to improve the original answer. Finally, we present
a vision of how Large Language Models may support rigorous formal
verification of software systems and describe the necessary next steps in
this direction.

Keywords: Deductive Program Verification, Large Language Models,
Specification Generation, Design by Contract, Java Modeling Language

1 Introduction

To this day, the formal specification of software in a manner that admits full
functional verification is a tedious task requiring many human work hours. The
⋆ This version of the contribution has been accepted for publication, after peer review

but is not the Version of Record and does not reflect post-acceptance improvements,
or any corrections. The Version of Record is available online at: https://doi.org/
10.1007/978-3-031-75387-9_15. Use of this Accepted Version is subject to the
publisher’s Accepted Manuscript terms of use https://www.springernature.com/
gp/open-research/policies/accepted-manuscript-terms

https://doi.org/10.1007/978-3-031-75387-9_15
https://doi.org/10.1007/978-3-031-75387-9_15
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

2 B. Beckert et al.

program verification community has developed numerous symbolic AI tools that
admit deductively proving functional properties and to a certain extent can de-
rive specifications from code. But these tools lack a human developer´s cognition
that admits an intelligent prediction of necessary annotations based on the sur-
rounding code and specification. In the research line of subsymbolic AI, recent
advances in large language models (LLMs) have shown how these models can
bring a similar kind of cognition to code generation in scenarios where only a
minimal description of the intended behavior is given [7]. While the cognitive
ability of LLMs does not reach that of humans (yet), it is worthwhile to explore
their use for specification generation (in addition to code generation). To this
end, we see three main application scenarios for leveraging Intersymbolic AI [22]
in program specification by pairing rigorous verification with a language model’s
cognition: (1) the generation of requirement specifications based on code, nat-
ural language, or based on other specification languages; (2) The generation of
auxiliary specifications; (3) the co-development of specification and code. In use
case (2), we can guarantee soundness, or external consistency, because flaws in
auxilliary annotations can prevent a successful proof for the top-level specifi-
cation, but can never lead to an unsound verification result. For use cases (1)
and (3), however, we can only ensure internal consistency, i.e., we can check
via verification whether the code satisfies the generated specification, but not
whether the specification itself is adequate. To achieve the latter would require
human intervention.

In preliminary experiments, we observed that OpenAI’s ChatGPT has suffi-
cient knowledge of Design by Contract to produce semantically valid contracts
in the Java Modelling Language (JML) [14], a language for annotating Java code
with contract-based specifications. Based on this observation, this work explores
the potentials and limits of state-of-the-art Large Language Models, represented
by OpenAI’s GPT family, in JML annotation generation.

In Section 2, we outline potential use cases of LLM-based annotation gen-
eration in detail. Subsequently, we present a prototypical integration of JML
verifiers (KeY [1] or JJBMC [4]) with an LLM (see Section 3) and report experi-
mental results obtained with our prototype (see Section 4). Finally, we outline a
vision for how LLM-based annotation generation can push software verification
forward and present plans for our future research.

Related Work. Multiple prior works explored LLM capabilities for loop invari-
ant or assertion generation for C [6, 13, 15, 26], Rust [27] or Java programs [20]
although no verification w.r.t. a top-level-specification took place in the latter
case. Contrary to the large majority of benchmarks evaluated in prior work and
supported by JML’s rich specification language, the benchmark set used for our
evaluation contains many instances with a rich set of program primitives such as
arrays (e.g. sorting or search) and object fields (e.g. array sets) requiring spec-
ifications with quantifiers and framing. In the same direction of Intersymbolic
AI for program verification, Laurent and Platzer [17] proposed a technique for
the combination of nondeterministic programming with reinforcement learning
which is directly applicable to loop invariant synthesis. Lathouwers and Huisman

Towards Combining LLMs with Deductive Progam Verification 3

evaluated the use of ChatGPT for the generation of JML annotations for isolated
methods [16]. Contrary to our work, the authors did not consider an automated
feedback loop between a verifier and GPT and did not evaluate the generation
of auxiliary annotations w.r.t. a top-level specification. Granberry et al. [11] pro-
vide a qualitative evaluation of the capabilities of GPT-4 for specification of C
programs. In this way, the work is orthogonal to our quantitative analysis for
the isolated methods use case (see Section 4). Additionally, we also evaluate the
scenario of auxiliary annotation generation w.r.t. a given top-level specification.
Sun et al. [24] propose an approach for consistency checking between generated
(Dafny) code, specification, and comments to improve the quality of code/speci-
fication generations. This work can be seen as complementary to our work which
explores the capabilities of a large language model for JML-based top-level and
auxilliary specification generation.

2 Use Cases for Automated Specification Annotation

We envision three different use cases in which the generation of specifications by
an LLM could be harnessed for verification purposes. Specifically, we consider
(1) the generation of requirement specifications, (2) the generation of auxiliary
specifications, and (3) the conversational co-development of specification and
code. We will discuss each of the use cases in detail in the following sections. For
illustration, we use the code snippets in Listings 1.1 to 1.3.

Listing 1.1 shows a single method, which can be given to the LLM with the
task of generating a top level contract. This corresponds to use case (1).

Listing 1.2 contains a top-level method f and a method g called from within
the body of f. The top-level specification is given as a clause in JML3. It
states that after the termination of the method, the returned value (denoted by
\result) has a specific value. This is an example of a very simple contract only
containing a postcondition. Additionally, we could specify a method’s precondi-
tion (via a requires clause), that the method terminates without exceptions (via
the keyword normal_behavior), its write effects (via an assignable clause), or
which exceptions are thrown (via signals clauses). In general, JML contains
a lot of such features to specify program behavior in great detail. However, for
the purpose of this paper, the basic method and loop specification elements are
sufficient. For this listing, two of the use cases fit: the generation of auxiliary
specifications (2) and the co-development of specification and code (3). The lat-
ter could for example occur when code from the method body of f is refactored
into the new method g.

Listing 1.3 contains only a single method f with a contract, which states
that after termination the variable y contains the sum of all values from 1 to x.
Since the method body contains a loop, to be able to verify the contract, a loop
invariant (more precisely, a loop specification, which also contains framing and
3 In principle, the considerations in this section are valid for other contract-based

specification languages (ACSL, Dafny, . . .), but for the examples and experiments
of this paper we focus on JML.

4 B. Beckert et al.

int g(int x) {
return x+x;

}

Listing 1.1.
Isolated method
without annotation.

//@ ensures
//@ \result == -2*x;
int f(int x) {

return g(-x);
}
int g(int x) {

return x+x;
}

Listing 1.2. Called method
without annotation

//@ ensures
//@ y == x*(x+1)/2;
void f(int x) {

y = 0;
while (x>0) {

y+=x; x--;
}

}

Listing 1.3. Specified method
containing loop without
annotation

termination information) is necessary. This listing demonstrates use case (2),
where the LLM is tasked with the generation of this auxiliary specification.

2.1 Generating Requirement Specification

A major bottleneck of program verification is that the properties to be verified
are only given informally as texts. Thus, any verification effort relies on the
conversion of informal texts to formal specifications. This conversion is often
tedious, error-prone, and time-consuming and thus presents a major hurdle for
formal methods. To overcome some of the problems, formal requirement speci-
fications for the verification target (code block, function, entire software) could
be generated by an LLM from a human-provided natural language description.
E.g. for Listing 1.1 an engineer would simply state the to-be-verified method g
is “doubling the value of x” and the LLM would provide a suitable formal speci-
fication in the specification language of choice. While potentially providing huge
benefits in terms of accessibility of formal specification, this approach has a ma-
jor drawback: The verification of the generated specification does not give any
guarantees with regard to the original, informal properties. Thus, verification
here only guarantees internal consistency between code and generated specifi-
cation (e.g. for Listing 1.1 we can only guarantee that a generated specification
is indeed satisfied by the method g). A similar drawback is that the generated
contract could be arbitrarily weak, that is, only state "ensures true" as a post-
condition. However, the adequacy of the generated specification then needs to
be checked by the human engineer and possibly improved (with or without help
from the LLM). Thus, the complex task of guaranteeing that a specification ac-
tually reflects the intended behavior (which might be the real bottleneck) still
falls into the hands of a human. To make this LLM application effective, use-
ful summaries of a specification improving an engineer’s understanding of the
generated specification may prove to be useful.

Towards Combining LLMs with Deductive Progam Verification 5

2.2 Generating Auxiliary Specifications

Another bottleneck for a lot of tools is the need for auxiliary specifications such
as loop invariants, pre-/postconditions for helper functions, or other assertions.
This is especially true for approaches like auto-active verification, where the in-
teractions consist of textual annotations in the input artifact (a term coined by
Leino and Moskal [18]), or for interactive proof assistants. LLMs can be used to
generate such auxiliary specifications automatically. For example in Listing 1.2,
an LLM could be used to annotate method g with a contract that allows the
verification of f without reliance on unrolling. Similarly, in Listing 1.3, an LLM
could be used to annotate the loop with a suitable loop specification that allows
the verification of f. First and foremost, auxiliary specifications can be generated
based on the method’s code which describes its behavior precisely. Additionally,
pre-existing top-level specifications can be used as a basis for the LLM’s genera-
tions. This second input is of particular importance to later ensure that we can
verify, both, the internal consistency between code and generated annotation
(e.g. in Listing 1.2 we ensure that the LLM generated contract correctly reflects
the behavior of g) as well as the external consistency between specification and
top-level-specification of the calling method or surrounding code (for example
in Listing 1.2 we also ensure that f is verifiable w.r.t. the generated contract
for g). Moreover, providing pre-existing specifications to the LLM also helps as
a prompting strategy as it can serve the LLM as a template for its generated
annotations – in particular since invariants and submethod contracts often share
similar clauses with the top-level annotation.

A major advantage of generating only auxiliary specifications in contrast to
the previous scenario, is that the generated specification is not relevant to the
soundness of the overall proof. In other words: If a verification attempt relying
on generated auxiliary specification succeeds, the result is as good as any other
verification (not relying on generated specification). This also means that no
human has to check the generated specification for errors as those would neces-
sarily show up during verification if present. A direct consequence of this fact is
that generating arbitrarily many variations of such specifications and testing if
any of those are suitable to conduct the proof is in principle a valid strategy.

2.3 Conversational Co-Development of Specification and Code

Recent studies demonstrated that the use of GitHub Copilot can significantly in-
crease the speed of application development [21]. At the same time, it is common
knowledge that LLMs may produce flawed code [7, 9] and that their use may
thus introduce bugs into a codebase. By using LLMs for the co-development of
specification annotations and code, we may be able to mitigate this drawback of
today’s LLM-based code generation. In this setting, a developer’s change to the
code base would be answered by appropriate changes to the corresponding spec-
ification. Similarly, given a change in the specification, the LLM would update
the code accordingly. We can then use a verification tool to prove predefined
top-level specifications correct after the changes are applied. For example, one

6 B. Beckert et al.

could imagine that in Listing 1.2 method f originally computed -2*x directly
and that the computation was now extracted into a new method. It would then
be the LLM’s task to add a new annotation for g which reflects the code change
and allows the verification of the top-level specification. Ideally, this approach
would be conversational: By leveraging the support of LLMs for natural language
understanding, the LLMs could pose questions to the developer to appropriately
adapt the specification/code. Ahrendt et al. [2] discuss such a development model
in which annotation generation methodologies like the one evaluated in Section 4
may be applicable.

3 A Prototype for Verified Annotation Generation

While the prior considerations about using LLMs for specification synthesis are
tool agnostic, we implemented a prototype of the concept combining LLMs and
the KeY verification tool, and we also performed experiments combining LLMs
with the model checker JJBMC.

Verifiers. KeY [1] is a tool which allows verifying deductively that a Java pro-
gram adheres to a specification written in JML. For verification, KeY uses a
sequent calculus and symbolic execution. Rules can be applied automatically
by a built-in proof search strategy or manually via a graphical interface by the
user. Optionally, KeY can use SMT solvers as verification backend. One central
concept of KeY is modular verification: By abstracting the behavior of called
methods with contracts, during verification, only the implementation of a single
method has to be considered at any given time. This leads to a clean separation
of specification and implementation, where in case of changes in the program
only a few contracts, often only a single one, have to be re-verified.

JJBMC [4] is a bounded model checker for Java based on JBMC [8]. However,
in contrast to the original JBMC, which examines all methods provided at the
same time via inlining, JJBMC works with contracts in JML and thus can be
used for modular verification as well.

Prototype. We implemented a prototype integration for LLMs with the above-
mentioned verifiers. Our integration prompts GPT to generate a contract for
a given method or loop and then attempts to verify the returned annotation.
In case the verification fails, we prompt GPT with primitive feedback on the
failure reason (e.g. open proof branches, parsing errors, or traces) and request a
new annotation. Our pipeline can be used to generate auxiliary annotations for
submethods or loops (see also Section 2.2) in which case our pipeline also at-
tempts to verify the calling/surrounding method w.r.t. the provided annotation.
In this case, we consider an attempted annotation successful if the verifier can
prove, both, internal consistency (the generated annotation describes the source
code) and external consistency (the generated annotation allows the verification
of a top-level specification). Moreover, our pipeline can be used for the JML
annotation of isolated methods (see also Section 2.1) in which case we have no

Towards Combining LLMs with Deductive Progam Verification 7

guarantees beyond internal consistency (between code and generated annota-
tion). Since our objective was to obtain a baseline for the performance of a naive
GPT integration, we did not put significant effort into prompt engineering.

4 Experiments

We evaluated different aspects of our prototypical integration w.r.t. OpenAI’s
GPT 3.5 and the newly released GPT 4o. For the KeY integration prototype,
we performed an extensive quantitative evaluation (see Section 4.1), for JJBMC
we evaluated GPT’s ability to interpret trace-based counterexamples (see Sec-
tion 4.2). To this end, we also collected a set of benchmark instances with missing
JML annotations which can be used to evaluate the performance of LLM-based
annotation generation.

Benchmark Selection. For our evaluation, we collected a set of JML annotated
Java files as a benchmark set. First, we collected JML annotated files from the
repositories of our tool KeY. Additionally, we repurposed JML exercises from
the last 10 iterations of our formal methods lecture as benchmarks. We cate-
gorize the benchmarks into three classes: isolated methods, contracts for sub-
methods (called by a method annotated with a top-level specification), and loop
specifications (within a specified method). The programs mainly contain simple
algorithms, which often use arrays, and the specifications involve a lot of quan-
tifiers and basic features of the Java Modeling Language (JML). In particular,
we made sure not to use some of the more “exotic” and rarely used features of
JML, such as history constraints or ownership modifiers. Examples of bench-
marks are a method to calculate the greatest common divisor, an insertion sort
implementation, or a method to detect whether an array contains a palindrome.
An overview of important features of Java and JML that were used in the bench-
mark examples can be found in Table 1. We summarize all features that showed
up in the original file from which we constructed the benchmark instance. This is
an interesting statistic because during specification generation, these primitives
either need to be reconstructed (for the missing specification) or parsed (for the
surrounding code) by the LLM. Note that most of the benchmarks use arrays
and quantifiers, about two third of them require non-empty assignable clauses
(that is, not just \nothing), and in about 40 the \old operator is used to refer
to the pre-state. Also, a particularly interesting feature is the use of method calls
in the specification, which is needed in 24 cases. Moreover, we have 22 bench-
mark instances that access an object’s field. The following steps were conducted
in the preparation of the benchmarks: (1) Each file was checked for provability
via KeY with default settings and a step limit of 8,000 rule applications; (2) In
each benchmark file one annotation was removed (i.e., GPT had to fill in one
method contract or loop annotation). Using this approach, we were able to gen-
erate multiple benchmarks from a single JML annotated Java file by masking
different parts of the annotation. In total, we constructed a benchmark set with
37 examples for the “isolated method”, 27 examples for the “loop invariant”, and
14 for the “submethods” category.

8 B. Beckert et al.

Table 1. Overview of a selection of Java/JML features used in the benchmarks.

Isolated Methods Submethods Invariants Total
Benchmarks 36 27 14 77
Quantifiers 32 24 14 70
Arrays 30 23 13 66
Non-empty assignable clause 24 17 11 52
Referring to the pre-state (\old) 18 11 8 37
(Pure) Method calls in specification 10 7 7 24
Field access 11 7 3 21

Table 2. Overview on experimental results: For each category, we report the mean
(µ) and standard deviation (σ) of our success rate when verifying GPT-3.5 or GPT-4o
generated JML contracts in KeY.

Category # Benchmarks µ± σ of success rate (%)
GPT 3.5 GPT 4o

Isolated Method 36 52.2± 4.3 62.0± 1.6
Submethods 14 19.3± 12.1 40.5± 4.1
Invariants 27 37.0± 7.4 67.9± 5.7

4.1 Experimental Results

We evaluated our prototype, both, w.r.t. GPT 3.5 and w.r.t. the newly released
GPT 4o. An overview on the success of the approach across all three problem
categories is provided in Table 2. For our experiments, we used KeY with its
default configuration and a limit of 10,000 steps per invocation. Additionally, we
set a timeout of 100 seconds for any invocation of KeY. If GPT did not provide
a correct annotation within 8 answers, we aborted the pipeline. For each task
category, we measure how many of the benchmarks (total: # Benchmarks) were
solved and report means and standard deviations resp. across 10 and 3 repetitions
for GPT 3.5 and GPT 4o4. Due to excessive timeouts, we had to exclude one
benchmark from the Isolated Method category. While GPT was able to provide
numerous verifiable annotations for isolated methods, the results are weaker for
submethod and invariant generation with the exception of invariant generation
using GPT 4o. This is expected, as the generation of an annotation that is
sufficient for proving top-level specifications is a harder task than providing any
internally consistent specification. Notably, we observe that GPT 4o outperforms
GPT 3.5’s capabilities across all three benchmark categories. In the following,
we will discuss the results for the three categories in more detail.

Annotation Generation for Isolated Methods The observation that this
benchmark category is very successful may be of little surprise: Given, that
we only check whether the annotation is verifiable for the given method, the
4 As GPT 4o is significantly more expensive than GPT 3.5 and we observed low

variance after 3 experiment runs, we decided to omit further repetition for GPT 4o.

Towards Combining LLMs with Deductive Progam Verification 9

provided contracts may be arbitrarily weak. For example, a contract requires
true; ensures true; would count as success raising the questions about the
nature of contracts generated by GPT in this scenario. A manual inspection of
successfully verified contracts found no cases in which the generated contract
was of this undesirable form. GPT 4o neither produces the kind of trivial con-
tract mentioned above. The generated contracts contained specific, meaningful
(though sometimes incomplete) descriptions of the implementation’s behavior.
While GPT 3.5 solves 52.2% of benchmarks on average, across all 10 itera-
tions we were able to find solutions for 27 of the 36 considered benchmarks (i.e.
for 75% of benchmarks). We observe that the LLMs usually do not generate
normal_behavior without explicit prompting which is of particular importance
for submethod contracts (see below). In some cases, we observed that running
the procedure multiple times produced different, complementary contracts that
could be combined.

Fig. 1. Number of observed
executions where successful
contract generation happened
in i-th iteration (out of 8) for
GPT 3.5.

Recovery from invalid annotations. In case GPT
did not provide a verifiable annotation for the first
attempt, we performed up to 8 iterations in which
GPT was fed with primitive information on the
kind of failure encountered and asked for an up-
dated annotation. Thus, we analyzed after how
many iterations GPT provided the correct anno-
tation. Overall, we received 188 correct answers
by GPT 3.5. As can be seen in Figure 1, GPT
3.5 often provides the correct answer on the first
try and the likelihood of obtaining a correct an-
swer decreases with conversation length. Similar
behavior is observable for GPT 4o. We also ana-
lyzed the reasons why verification failed. We cate-
gorize the errors into syntactic errors (JML was
not parseable) and semantic errors (verification
failed) and summarize the results in Table 3. The
most commonly encountered failure case is an incomplete proof, i.e. KeY cannot
verify that the method satisfies the provided specification or times out during
the attempt. For isolated methods, this means the generated specification does
not match the code’s behavior, i.e. there is an internal inconsistency. The most
commonly identifiable syntactic error concerns the incorrect usage of variables.
We also observe significantly fewer syntactic errors with GPT 4o vs. GPT 3.5.
Given the high share of timeouts (likely a result of excessive rule application for
proving a wrong annotation), quickly finding bugs in wrong annotations may be
a worthwhile extension of the approach. While the feedback provided to GPT
sometimes helps to repair annotations, the question of how to prompt GPT to
obtain improved contracts and how to represent feedback on errors w.r.t. the
current annotation remains a major avenue for future research.

10 B. Beckert et al.

Table 3. Reasons for failed verification during annotation generation for isolated meth-
ods (percentages do not sum to 100 due to rounding errors).

Error Category Share of error (%)
GPT 3.5 GPT 4o

Syntactic Errors
Loop Invariant Generation 4.3 1.3
Unknown variable names 11.8 2.2
Incorrect usage of \result 1.1 0.3
Other parsing errors 17.1 10.7
Semantic Errors
Incomplete proof 49.5 70.3
Timeout of Verifier 16.0 15.1

Data Contamination. The observed results raise the question of whether parts
of our benchmark set were part of GPT’s training dataset. While the solutions to
the JML exercises from our lecture have not been publicized online, the bench-
mark instances stemming from the KeY repository are available on GitHub.
Unfortunately, it is impossible to check for data contamination due to the tac-
iturnity of OpenAI about used training data. However, one (weak) indicator of
memorization (i.e. the language model remembering the correct solution instead
of predicting it) might be the repetition of the exact same solution, i.e. the lan-
guage model repeating the same solution multiple times. For GPT 3.5, omitting
benchmarks where we observe the bit-precise repetition of contracts, we find 14
of the 27 instances that were solved in at least one of the 10 runs remain. For
GPT 4o, we cannot provide a similar number as the experiments were only run
for 3 repetitions. Another indicator for memorization may be a language model’s
token log probabilities: Text that was used for training might have a higher log
probability. While log-probabilities are neither available for GPT 3.5 nor GPT
4o, evaluating log-probabilities for the predecessor model GPT 3 (model code-
name davinci-002) showed no significant correlation between success and log-
probability (r = 0.11 with p = 0.49 for GPT 3.5, r = 0.18 with p = 0.32 for
GPT 4o). Thus, while we cannot rule out data contamination for our benchmark
data set, we also were not able to find strong evidence in favor of this hypothesis.

Auxilliary Annotation Generation For auxiliary annotation generation, we
evaluated, both, the LLM’s capabilities for generating loop invariants and its
capabilities for generating contracts for submethods. In both cases, we also veri-
fied a surrounding or calling method annotated with a specification (the top-level
specification was also an input for the LLM). This allows us to evaluate whether
the LLM is capable of generating annotations that help with the completion
of a given specification task. For annotation of submethods, we observe that
GPT 4o significantly outperforms GPT 3.5: While GPT 3.5 solves 19.2% of the
benchmark instances on average, GPT 4o solves 40.5% of the instances on av-
erage. An example of the kind of contracts generated by GPT can be found in

Towards Combining LLMs with Deductive Progam Verification 11

Listing 1.4: In this case, GPT 4o had to create a contract for a submethod that
performs a cyclic rotation of array elements by an offset len. The method con-
tains three loops and operates over two arrays. GPT 4o generated this contract
after two failed attempts due to timeouts. In this instance, we observe that GPT
4o demonstrates the correct usage of quantifiers, the assignable clause, and the
\old annotation. In case we cannot verify a benchmark, there are two semantic
failure cases: Either we cannot verify the top-level specification using the con-
tract generated for the submethod or we can verify the top-level specification
w.r.t. the contract, but the contract cannot be verified w.r.t. the submethod.
For loop invariants, we find that GPT 4o also outperforms GPT 3.5 reaching a
success rate of 67.9%. It is worth to note that across all three benchmark runs,
GPT 4o generated correct invariants for 22 out of 27 benchmarks (i.e. for 81.4%
of benchmarks). This indicates, that repeated sampling generates more correct
annotations.
/*@ normal_behavior
@ requires a != null && 0 <= len && len <= a.length;
@ assignable a[*];
@ ensures (\forall int i; 0 <= i && i < len; a[i] == \old(a[a.length - len + i]));
@ ensures (\forall int i; len <= i && i < a.length; a[i] == \old(a[i - len]));
@*/

Listing 1.4. Example of an annotation generated by GPT 4o for a method performing
a cyclic rotation of an array: The contract is sufficient to prove a top-level-specification
of a calling method.

4.2 Correcting Generated Specifications with Traces

To explore the possibility of recovering from faulty generated specifications, we
provided counterexamples to the LLM in the form of traces of the proposed
solutions. For this purpose, we utilized a bounded model checker capable of
verifying JML contracts: JJBMC [4]. This tool is deemed suitable due to its
comparative speed and its ability to generate traces pinpointing the specific ver-
ification conditions and inputs that lead to the failed proof attempt. Since we
observed in the previous section that about 50% of the generated specifications
are still flawed fast and accurate feedback is essential which is underscored by
the large share of timeouts. Our setup for JJBMC closely mirrored that of the
previous experiments: First, we asked the LLM to generate an (initial) specifica-
tion. Subsequently, this specification was verified with JJBMC. In cases where
JJBMC found a counterexample, we fed this counterexample back to the LLM
and requested a corrected version of the specification. We aborted either if the
verification succeeded or if a predetermined number of attempts was reached.

We have not yet conducted experiments as thorough as those in previous
sections, because JJBMC is not readily applicable to the considered benchmark
instances (e.g., due to special KeY-specific JML constructs or unsupported JML
features in the benchmark). However, we were able to conduct some preliminary
manual tests. The results of these tests were mixed, leading to three major
takeaways which we discuss below.

12 B. Beckert et al.

The provided invariant does not hold for the following instantia-
tions of variables:
k = 0
a = [0, 0, 0]
i = 1

You’re right; we still need to refine the loop invariant to han-
dle the specific case where the array length is odd. In such
cases, the middle element should remain unchanged.
Let’s correct the loop invariant to ensure it properly handles
the cases when the length of the array is odd. We need to en-
sure that the middle element remains unchanged throughout
the loop execution.
Here’s the corrected code:
...

Fig. 2. Example of a conversation with ChatGPT confronting it with a counterexample
to its generated invariant

Correcting Simple Errors is Possible. The initial attempts by the LLM some-
times contain easy-to-avoid mistakes. A common mistake is not to provide an
assignable clause when generating subcontracts or invariants. Assignable clauses
in JML are used to specify the locations of the heap that are allowed to be
modified by the specified part of code. Leaving out such a clause defaults to the
most general assumption that the entire heap could be modified. This omission
is problematic as it will not allow for the verification of the top-level method if it
allows for anything less than the modification of the entire heap. Providing the
LLM with the corresponding JJBMC error typically results in it correctly adding
the missing clause, thereby avoiding the mistake. We observed that similar sim-
ple errors, where the specification was not provable due to a wrong assignable
clause, were also correctly identified and fixed by the LLM when given appro-
priate feedback from the verification tool.

LLM Correctly Interprets Most Traces. Another observation is that the LLM
often correctly summarizes the meaning of counterexamples to its specifications.
For instance, consider the example illustrated in Fig. 2. A concrete counterex-
ample is provided that shows that a loop-invariant does not hold for a certain
set of values. The LLM correctly explains this scenario, however, the conclusions
it draws regarding the newly generated JML are often incorrect. This suggests
that further experiments are needed. It is possible that different or more refined
prompts could lead to better results, or it may indicate that achieving correct
specifications may require significant adjustments to our approach.

One-Shot Strength. Our manual experiments reinforce the earlier observation
that the system mainly gets it right on the first try or not at all. Ignoring simple
mistakes as mentioned above, we found no instance where an initially incorrect
specification was fully corrected by providing counterexamples alone. While we

Towards Combining LLMs with Deductive Progam Verification 13

found several promising examples where the LLM initially corrected its specifi-
cation in a seemingly positive direction, continued exposure to new counterex-
amples eventually led to the recycling of old versions or even complete deteriora-
tion, sometimes even resulting in alterations to the original code. Consequently,
we never successfully corrected an initially faulty specification. Although inter-
mediate improvements appeared promising, the inability to find complex spec-
ifications using our proposed method must be considered a negative outcome.
Future experiments, incorporating various adaptations and enhancements to our
experimental setup, are necessary to reach a conclusive verdict on this matter.

5 Vision and Research Plan

Deductive verification is important for guaranteeing dependability of critical
software. It can be used in a co-development manner or even to find bugs in
deployed software [5, 10, 12]. However, while worthwhile, verifying a larger soft-
ware library using tools such as KeY is a work-intensive endeavor that requires
large amounts of manual annotation work. We believe that integrating Large
Language Models into the annotation generation process bears the potential
to significantly reduce this workload: If we can reduce the human annotation
work-load to writing (or, in the next step, maybe even only checking) top-level
specifications, this would enable us to exploit the pre-existing machinery for Java
verification via KeY to verify much larger parts of the Java Standard Library or
to verify other large software projects without the manual effort incurred today.
We envision as a long term goal that an integration of Large Language Models
with autoactive verifiers will eventually be able to verify algorithms from, say,
the Java Standard Library solely based on a human-provided top-level specifi-
cation. While the results presented in Section 4 represent a promising first step
in this direction, putting this approach into practice requires significant further
research which we outline throughout this section.

Recovery from invalid annotations. While GPT’s performance in a “one-shot”
setting is surprisingly strong, we believe that providing well-presented, fine-
grained feedback to a proposed annotation can push the capabilities of LLMs
for annotation generation even further. The great advantage of using LLMs in
(auxiliary) annotation generation is the observation that we can check whether a
provided annotation is helpful. The KeY community has put great effort into the
development of tools that make it easier for humans to understand the reasons
why a proof fails. Some examples of this are counterexample generation, trace
generation using JJBMC, KeY’s source code view which maps constraints in the
sequent back to JML expressions, and the proof branch structure which tells us
in what way an annotation is insufficient. It is now the time to repurpose all these
utilities and to make this information processable by LLMs. To this end, LLMs
capable of performing program trace reasoning may be a viable option [19].

Large-scale annotation. In the experiments outlined in Section 4 we assumed
that all but one annotation had already been provided. In future research, we

14 B. Beckert et al.

plan to derive strategies allowing for the annotation of entire classes w.r.t. a
single given top-level specification.

A standard library of JML predicates. Even when a large language model cor-
rectly classifies the behavior of a method, it may still provide the wrong annota-
tion due to hard-to-spot errors in the generated predicates. For example, it might
correctly classify a method as sorting, but introduce a subtle indexing bug into
the predicate ensuring that the result is a permutation of the original method.
This raises the question of whether we need a standard library of common JML
predicates that are less error-prone than native encodings by the LLM.

Influence of model architecture. In future research, we plan to evaluate how
much our baseline results are improved through the use of other models (e.g. the
Llama model family [23, 25] or other closed-source models). Additionally, it is
possible to create custom LLMs that are specifically tailored to a given task via
fine-tuning. This could be used to improve performance by explicitly training the
model on correct examples of contracts. We also plan to evaluate this approach
in future research.

Dataset curation. To develop and test prompt engineering approaches as well as
to fine-tune models for annotation generation, we require a larger set of bench-
mark instances. To this end, we hope to collaborate with other JML-based verifi-
cation tools to construct a larger code corpus, potentially using translation tools
in between different JML-dialects [3]. Additionally, the generation of synthetic
data via machine learning methods (e.g. using similar techniques to Laurent and
Platzer [17]) may be a viable option to generate data for fine-tuning and/or
prompt engineering.

Generation from informal description. In this work, we considered only the
generation of specifications from existing code or other generations without ad-
ditional input on what this specification is supposed to contain. In the future,
we plan to investigate how additional sources of information can be leveraged
to improve the quality of the generated specifications. There is a wide range
of possible sources for that including but not limited to an informal descrip-
tion of the behavior of the code, test cases, examples of correct behavior, and
documentation.

Acknowledgements. This work was supported by funding from the pilot pro-
gram Core-Informatics of the Helmholtz Association (HGF) as well as the DFG
projects BE 2334/9-1 and UL 433/3-1.

References

1. Ahrendt, W., Grebing, S.: Using the KeY Prover. In: Deductive Software Verifica-
tion - The KeY Book - From Theory to Practice. Ed. by W. Ahrendt, B. Beckert,
R. Bubel, R. Hähnle, P.H. Schmitt, and M. Ulbrich, pp. 495–539. Springer (2016).
https://doi.org/10.1007/978-3-319-49812-6_15

https://doi.org/10.1007/978-3-319-49812-6_15

Towards Combining LLMs with Deductive Progam Verification 15

2. Ahrendt, W., Gurov, D., Johansson, M., Rümmer, P.: TriCo - Triple Co-piloting
of Implementation, Specification and Tests. In: Margaria, T., Steffen, B. (eds.)
Leveraging Applications of Formal Methods, Verification and Validation. Verifi-
cation Principles - 11th International Symposium, ISoLA 2022, Rhodes, Greece,
October 22-30, 2022, Proceedings, Part I. LNCS, vol. 13701, pp. 174–187. Springer,
Heidelberg (2022). https://doi.org/10.1007/978-3-031-19849-6_11

3. Armborst, L., Lathouwers, S., Huisman, M.: Joining Forces! Reusing Contracts for
Deductive Verifiers Through Automatic Translation. In: Herber, P., Wijs, A. (eds.)
iFM 2023 - 18th International Conference, iFM 2023, Leiden, The Netherlands,
November 13-15, 2023, Proceedings. LNCS, vol. 14300, pp. 153–171. Springer, Hei-
delberg (2023). https://doi.org/10.1007/978-3-031-47705-8_9

4. Beckert, B., Kirsten, M., Klamroth, J., Ulbrich, M.: Modular Verification of JML
Contracts Using Bounded Model Checking. In: Margaria, T., Steffen, B. (eds.)
Leveraging Applications of Formal Methods, Verification and Validation: Verifi-
cation Principles - 9th International Symposium on Leveraging Applications of
Formal Methods, ISoLA 2020, Rhodes, Greece, October 20-30, 2020, Proceed-
ings, Part I. LNCS, vol. 12476, pp. 60–80. Springer, Heidelberg (2020). https:
//doi.org/10.1007/978-3-030-61362-4_4

5. Beckert, B., Sanders, P., Ulbrich, M., Wiesler, J., Witt, S.: Formally Verifying
an Efficient Sorter. In: Finkbeiner, B., Kovács, L. (eds.) Tools and Algorithms
for the Construction and Analysis of Systems - 30th International Conference,
TACAS 2024, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6-11,
2024, Proceedings, Part I. LNCS, vol. 14570, pp. 268–287. Springer, Heidelberg
(2024). https://doi.org/10.1007/978-3-031-57246-3_15

6. Chakraborty, S., Lahiri, S.K., Fakhoury, S., Lal, A., Musuvathi, M., Rastogi, A.,
Senthilnathan, A., Sharma, R., Swamy, N.: Ranking LLM-Generated Loop Invari-
ants for Program Verification. (2023). https://doi.org/10.18653/V1/2023.
FINDINGS-EMNLP.614

7. Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto, H.P., Kaplan, J.,
Edwards, H., Burda, Y., Joseph, N., Brockman, G., Ray, A., Puri, R., Krueger,
G., Petrov, M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray, S., Ryder, N.,
Pavlov, M., Power, A., Kaiser, L., Bavarian, M., Winter, C., Tillet, P., Such, F.P.,
Cummings, D., Plappert, M., Chantzis, F., Barnes, E., Herbert-Voss, A., Guss,
W.H., Nichol, A., Paino, A., Tezak, N., Tang, J., Babuschkin, I., Balaji, S., Jain,
S., Saunders, W., Hesse, C., Carr, A.N., Leike, J., Achiam, J., Misra, V., Morikawa,
E., Radford, A., Knight, M., Brundage, M., Murati, M., Mayer, K., Welinder, P.,
McGrew, B., Amodei, D., McCandlish, S., Sutskever, I., Zaremba, W.: Evaluating
Large Language Models Trained on Code. CoRR (2021). arXiv: 2107.03374

8. Cordeiro, L.C., Kesseli, P., Kroening, D., Schrammel, P., Trtik, M.: JBMC: A
Bounded Model Checking Tool for Verifying Java Bytecode. In: Chockler, H., Weis-
senbacher, G. (eds.) Computer Aided Verification - 30th International Conference,
CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK,
July 14-17, 2018, Proceedings, Part I. LNCS, vol. 10981, pp. 183–190. Springer,
Heidelberg (2018). https://doi.org/10.1007/978-3-319-96145-3_10

9. Dakhel, A.M., Majdinasab, V., Nikanjam, A., Khomh, F., Desmarais, M.C., Jiang,
Z.M.(: GitHub Copilot AI pair programmer: Asset or Liability? J. Syst. Softw.
203, 111734 (2023). https://doi.org/10.1016/J.JSS.2023.111734

https://doi.org/10.1007/978-3-031-19849-6_11
https://doi.org/10.1007/978-3-031-47705-8_9
https://doi.org/10.1007/978-3-030-61362-4_4
https://doi.org/10.1007/978-3-030-61362-4_4
https://doi.org/10.1007/978-3-031-57246-3_15
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.614
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.614
https://arxiv.org/abs/2107.03374
https://doi.org/10.1007/978-3-319-96145-3_10
https://doi.org/10.1016/J.JSS.2023.111734

16 B. Beckert et al.

10. de Gouw, S., de Boer, F.S., Bubel, R., Hähnle, R., Rot, J., Steinhöfel, D.: Verifying
OpenJDK’s Sort Method for Generic Collections. J. Autom. Reason. 62(1), 93–126
(2019). https://doi.org/10.1007/S10817-017-9426-4

11. Granberry, G., Ahrendt, W., Johansson, M.: Specify What? A Case-Study using
GPT-4 and Formal Methods For Specification Synthesis. In: AI for Math Workshop
@ ICML 2024 (2024). https://openreview.net/forum?id=ZRTcPkNl7v

12. Hiep, H.A., Maathuis, O., Bian, J., Boer, F.S.D., van Eekelen, M.C.J.D., Gouw,
S.D.: Verifying OpenJDK’s LinkedList using KeY. In: Biere, A., Parker, D. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems, 26th Intl.
Conf. TACAS, Dublin, Ireland, Part II. LNCS,vol. 12079, pp. 217–234. Springer,
Heidelberg (2020). https://doi.org/10.1007/978-3-030-45237-7_13

13. Janßen, C., Richter, C., Wehrheim, H.: Can ChatGPT support software verifica-
tion? In: Beyer, D., Cavalcanti, A. (eds.) Fundamental Approaches to Software En-
gineering - 27th International Conference, FASE 2024, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2024, Luxembourg
City, Luxembourg, April 6-11, 2024, Proceedings. LNCS, vol. 14573, pp. 266–279.
Springer, Heidelberg (2024). https://doi.org/10.1007/978-3-031-57259-3_13

14. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P.,
Kiniry, J., Chalin, P., Zimmerman, D.M., Dietl, W.: JML Reference Manual. Draft
revision 2344. May 2013. http://www.eecs.ucf.edu/~leavens/JML//OldReleases/
jmlrefman.pdf.

15. Kamath, A., Senthilnathan, A., Chakraborty, S., Deligiannis, P., Lahiri, S.K., Lal,
A., Rastogi, A., Roy, S., Sharma, R.: Finding Inductive Loop Invariants using Large
Language Models. CoRR abs/2311.07948 (2023). arXiv: 2311.07948

16. Lathouwers, S., Huisman, M.: Survey of annotation generators for deductive veri-
fiers. Journal of Systems and Software 211, 111972 (2024). https://doi.org/10.
1016/j.jss.2024.111972

17. Laurent, J., Platzer, A.: Learning to Find Proofs and Theorems by Learning to
Refine Search Strategies: The Case of Loop Invariant Synthesis. In: Koyejo, S.,
Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A. (eds.) Advances in Neu-
ral Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 -
December 9, 2022 (2022)

18. Leino, K.R.M., Moskal, M.: Usable auto-active verification. In: Ball, T., Zuck, L.,
Shankar, N. (eds.) Usable Verification Workshop (2010). https://fm.csl.sri.
com/UV10

19. Ni, A., Allamanis, M., Cohan, A., Deng, Y., Shi, K., Sutton, C., Yin, P.: NExT:
Teaching Large Language Models to Reason about Code Execution. CoRR abs/2404.14662
(2024). arXiv: 2404.14662

20. Pei, K., Bieber, D., Shi, K., Sutton, C., Yin, P.: Can Large Language Models Reason
about Program Invariants? In: Krause, A., Brunskill, E., Cho, K., Engelhardt, B.,
Sabato, S., Scarlett, J. (eds.) Proceedings of the 40th International Conference on
Machine Learning. Proceedings of Machine Learning Research, pp. 27496–27520.
PMLR (2023). https://proceedings.mlr.press/v202/pei23a.html

21. Peng, S., Kalliamvakou, E., Cihon, P., Demirer, M.: The Impact of AI on Devel-
oper Productivity: Evidence from GitHub Copilot. CoRR abs/2302.06590 (2023).
arXiv: 2302.06590

22. Platzer, A.: Intersymbolic AI: Interlinking Symbolic AI and Subsymbolic AI. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2024. LNCS, Springer, Heidelberg (2024)

https://doi.org/10.1007/S10817-017-9426-4
https://openreview.net/forum?id=ZRTcPkNl7v
https://doi.org/10.1007/978-3-030-45237-7_13
https://doi.org/10.1007/978-3-031-57259-3_13
http://www.eecs.ucf.edu/~leavens/JML//OldReleases/jmlrefman.pdf
http://www.eecs.ucf.edu/~leavens/JML//OldReleases/jmlrefman.pdf
https://arxiv.org/abs/2311.07948
https://doi.org/10.1016/j.jss.2024.111972
https://doi.org/10.1016/j.jss.2024.111972
https://fm.csl.sri.com/UV10
https://fm.csl.sri.com/UV10
https://arxiv.org/abs/2404.14662
https://proceedings.mlr.press/v202/pei23a.html
https://arxiv.org/abs/2302.06590

Towards Combining LLMs with Deductive Progam Verification 17

23. Rozière, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I., Tan, X.E., Adi, Y., Liu,
J., Remez, T., Rapin, J., Kozhevnikov, A., Evtimov, I., Bitton, J., Bhatt, M.,
Canton-Ferrer, C., Grattafiori, A., Xiong, W., Défossez, A., Copet, J., Azhar, F.,
Touvron, H., Martin, L., Usunier, N., Scialom, T., Synnaeve, G.: Code Llama: Open
Foundation Models for Code. CoRR abs/2308.12950 (2023). arXiv: 2308.12950

24. Sun, C., Sheng, Y., Padon, O., Barrett, C.: Clover: Closed-Loop Verifiable Code
Generation. In: Avni, G., Giacobbe, M., Johnson, T.T., Katz, G., Lukina, A.,
Narodytska, N., Schilling, C. (eds.) AI Verification, pp. 134–155. Springer Nature
Switzerland, Cham (2024)

25. Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M., Lacroix, T., Roz-
ière, B., Goyal, N., Hambro, E., Azhar, F., Rodriguez, A., Joulin, A., Grave, E.,
Lample, G.: LLaMA: Open and Efficient Foundation Language Models. CoRR
abs/2302.13971 (2023). arXiv: 2302.13971

26. Wu, H., Barrett, C., Narodytska, N.: Lemur: Integrating Large Language Mod-
els in Automated Program Verification. In: The Twelfth International Confer-
ence on Learning Representations (2024). https://openreview.net/forum?id=
Q3YaCghZNt

27. Yao, J., Zhou, Z., Chen, W., Cui, W.: Leveraging Large Language Models for
Automated Proof Synthesis in Rust. CoRR abs/2311.03739 (2023). arXiv: 2311.
03739

https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2302.13971
https://openreview.net/forum?id=Q3YaCghZNt
https://openreview.net/forum?id=Q3YaCghZNt
https://arxiv.org/abs/2311.03739
https://arxiv.org/abs/2311.03739

	Towards Combining the Cognitive Abilities of Large Language Models with the Rigor of Deductive Progam Verification

