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Motivation: Can LLMs Generate Specifications?

Large Language Models have seen tremendous success in recent years

GitHub Copilot & Co show: LLMs can generate code

But can they specify code?
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Motivation: Can LLMs Generate Specifications?

/*@ normal_behavior

@ ensures (\forall int j;j >= 0 && j < a.length; \result >= a[j]);

@ ensures a.length > 0

@ ==> (\exists int j;j >= 0 && j < a.length; \result == a[j]);

@*/

public static /*@ pure */ int max(int[] a) {

if (a.length == 0) return 0;

int max = a[0], i = 1;

/*@

@

@

@

@

@*/

while (i < a.length) {

if (a[i] > max) max = a[i];

++i;

}

return max;

}

Verification requires Loop Invariant

Holds before first loop iteration

Preserved by loop iteration

Implies post condition

Additionally:
Loop Variant
Assignable Heap Variables
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if (a.length == 0) return 0;

int max = a[0], i = 1;
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@ loop_invariant (\forall int k; 0 <= k && k < i; max >= a[k]);
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@ assignable max, i;

@*/

while (i < a.length) {
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++i;

}

return max;

}
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Motivation: Can LLMs Generate Specifications?

Large Language Models have seen tremendous success in recent years

GitHub Copilot & Co show: LLMs can generate code

But can they specify code?

Writing auxiliary spec yourself [ChatGPT]
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Motivation: Can LLMs Generate Specifications?

Large Language Models have seen tremendous success in recent years

GitHub Copilot & Co show: LLMs can generate code

But can they specify code?

Having ChatGPT write auxiliary spec [ChatGPT]
6 May 3, 2025 S. Teuber and B. Beckert – Next Steps in LLM-Supported Java Verification



Motivation: Can LLMs Generate Specifications?

Large Language Models have seen tremendous success in recent years

GitHub Copilot & Co show: LLMs can generate code

But can they specify code?

Let’s ask ChatGPT:

Do you know JML, the Java Modeling Language?

Yes, I am familiar with JML (Java Modeling Language). JML is a formal
specification language for Java programs. [...] JML is typically used in con-
junction with formal verification tools, such as ESC/Java or KeY, to check
that the code meets its specifications.
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The Program Verifier KeY
Deductive verification

Java Modeling

Language (JML)

Modular

Reasoning

Numerous Case Studies:

TimSort (OpenJDK)

LinkedList (OpenJDK)

Super Scalar Sample Sort

100% Java Card

collaboration of KIT, TU Darmstadt, Chalmers University

Ahrendt u. a. 2016
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Java Modelling Language

Specification Language for Java

Design by Contract Paradigm

Rich set of possible first-order annotations:
– Hoare-Style pre- and post-conditions
– Invariants
– Asserts
– Class-Invariants

Supported by numerous tools
for Java verification

/*@ normal_behavior

@ ensures (\forall int j;j >= 0 && j < a.length; \result >= a[j]);

@ ensures a.length > 0

@ ==> (\exists int j;j >= 0 && j < a.length; \result == a[j]);

@*/

public static /*@ pure */ int max(int[] a) {

if (a.length == 0) return 0;

int max = a[0], i = 1;

/*@ loop_invariant 0 <= i && i <= a.length;

@ loop_invariant (\forall int k; 0 <= k && k < i; max >= a[k]);

@ loop_invariant (\exists int k; 0 <= k && k < i; max == a[k]);

@ decreases a.length - i;

@ assignable max, i;

@*/

while (i < a.length) {

if (a[i] > max) max = a[i];

++i;

}

return max;
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LLMs for Deductive Java Verification

Large Language Models
May produce output that is not correct

“Reasoning” is not rigorous

Inconsistent Answers

Deductive Verifiers
Lack “common sense”

Symbolic techniques:
Not good at “guessing” annotations
from context

Objective: An Intersymbolic AI approach to Program Verification

Combine LLMs and Deductive Verification so that weaknesses cancel out
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LLM-based generation of JML: Approach

Java Program
(partially annotated)

LLM:
Annotation Generation

Verifier

Annotation
Draft

Annotated File

Success

Wrong or
insufficient

//@ ensures \result == -2*x;

int f(int x) {

return g(-x);

}

int g(int x) {

return x+x;

}

[ISoLA 2024]
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LLM-based generation of JML: Approach

Java Program
(partially annotated)

LLM:
Annotation Generation

Verifier

Annotation
Draft

Annotated File

Success

Wrong or
insufficient

//@ ensures \result == -2*x;

int f(int x) {

return g(-x);

}

//@ ensures x == 2 ==> \result == 4;

int g(int x) {

return x+x;

}

[ISoLA 2024]
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Evaluation

Curation of a first, small benchmark set:
KeY repository and old exercise sheets

Benchmark Categories:
Generate top-level contract for isolated method
(Java ⇒ JML)
Generate auxilliary annotations for given top-
level spec
(Java+JML ⇒ JML)
– Loop invariant (given method contract)
– Contract of callee-method (given caller con-

tract)

Category Instances
𝜇± 𝜎 of success rate (%)
GPT 3.5
(n = 10)

GPT 4o
(n = 3)

Isolated Method 36 52.2 ± 4.3 62.0± 1.6

Submethods 14 19.3 ± 12.1 40.5± 4.1

Invariants 27 37.0 ± 7.4 67.9± 5.7

No elaborate prompt engineering yet!
Objective: Evaluate baseline performance

Not enough benchmarks
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Evaluation Benchmark: Features

Isolated Methods Sub-Methods Invariants Total
No. of benchmarks 36 27 14 77
JML features

Quantifiers 32 24 14 70 91%
Non-empty assignable 24 17 11 52 68%
Reference to pre-state (\old) 18 11 8 37 48%
(Pure) Method calls in spec 10 7 7 24 31%

Java features
Arrays 30 23 13 66 86%
Field access 11 7 3 21 27%
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LLM-based generation of JML: Approach

Java Program
(partially annotated)

LLM:
Annotation Generation

Verifier

Annotation
Draft

Annotated File

Success

?

Wrong or
insufficient

//@ ensures \result == -2*x;

int f(int x) {

return g(-x);

}

//@ ensures x == 2 ==> \result == 4;

int g(int x) {

return x+x;

}

What steps to take?
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Grasping Feedback
We can provide feedback on failed proof attempts,
but does this benefit the specification generation?

Concrete Counterexamples
Via bounded model checking

The provided invariant does not hold for the fol-
lowing instantiations of variables:
k = 0
a = [0, 0, 0]
i = 1

You’re right; we still need to refine the loop inva-
riant to handle the specific case where the array
length is odd. In such cases, the middle element
should remain unchanged.
...
Here’s the corrected code:
<wrong invariant>

Feedback from Proof State
Pass on parser errors
Pass on information on open proof branches

Focus: Auxilliary Specifications
Sampling (pass@N) vs. Feedback

10 rounds with GPT 4o

1 2 3 4 5 6 7 8 9 10
0.4

0.6

0.8

In
va

ria
nt

s

Successful Instances (GPT-4O)

Feedback
Sampling

Median
Min/Max

1 2 3 4 5 6 7 8 9 10
Steps

0.0

0.2

0.4

0.6

Su
bc

on
tra

ct
s

We need more benchmarks for conclusive results

Prompt Engineering for proof state descriptions requires more examples
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Feedback vs. Sampling
What is the right metric?
Classic Verification
Two verification techniques:
(A)5 iterations, 2 seconds CPU time/iteration
(B)3 iterations, 4 seconds CPU time/iteration
⇒ (A) is better

API usage hides computational cost!
What we know:
Computational cost increases with token count

Initial Query: I tokens

LLM Output: O tokens

Feedback: F tokens

Sampling: n (I + O) ∈ 𝒪 (n) tokens

Feedback: n (I + O) + n(n−1)
2 (O + F ) ∈ 𝒪

(︁
n2

)︁
tokens

Another evaluation:
Iterations −→ Normalized Token Count ( # Tokens

I )

Iteration based:

1 2 3 4 5 6 7 8 9 10
0.4

0.6

0.8

In
va

ria
nt

s

Successful Instances (GPT-4O)

Feedback
Sampling

Median
Min/Max

1 2 3 4 5 6 7 8 9 10
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Su
bc
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ct
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2 4 6 8 10 12 14
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0.5
0.7
0.9
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Successful Instances (GPT-4O)
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Median
Min/Max

2 4 6 8 10 12 14
Token Ratio
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Feedback vs. Sampling
What is the right metric?
Classic Verification
Two verification techniques:
(A)5 iterations, 2 seconds CPU time/iteration
(B)3 iterations, 4 seconds CPU time/iteration
⇒ (A) is better

API usage hides computational cost!
What we know:
Computational cost increases with token count

Initial Query: I tokens

LLM Output: O tokens

Feedback: F tokens

Sampling: n (I + O) ∈ 𝒪 (n) tokens

Feedback: n (I + O) + n(n−1)
2 (O + F ) ∈ 𝒪

(︁
n2

)︁
tokens

Another evaluation:
Iterations −→ Normalized Token Count ( # Tokens

I )

Iteration based:
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Related Work

This is a rapidly growing research field

A lot of work on Dafny (e.g. due to DafnyBench) Loughridge u. a. 2025

AUTOSPEC for C and ACSL with Frama C Wen u. a. 2024
– Beyond filling the gap:

Strategy for generating all method/invariant annotations
– No proof state feedback for individual annotations
– Also use ChatGPT API

Joint generation of code and specification Sun u. a. 2024
– No soundness guarantees
– Empirically: Consistency between code and spec helps

Dataset for JML via GitHub scraping Greiner u. a. 2024
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Conclusion

OpenAI’s models are surprisingly good at JML

Foundation Models:
– Make effective usage of ML for niche languages like JML possible
– Cannot solve all data problems (we still need well-curated benchmark sets)

Iteration helps, but feedback not (yet)

Open Questions

Effective Feedback from the verifier’s proof state

Prompt Engineering in the presence of “perfect checkers”
Sampling may not be that bad afterall?

What is a fair comparison between an LLM approach and a “classic” approach?
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Example: Find the Maximum

/*@ normal_behavior

@ ensures (\forall int j;j >= 0 && j < a.length; \result >= a[j]);

@ ensures a.length > 0 ==>

@ (\exists int j;j >= 0 && j < a.length; \result == a[j]);

@ */

public static /*@ pure */ int max(int[] a) {

if (a.length == 0) return 0;

int max = a[0], i = 1;

while (i < a.length) {

if (a[i] > max) max = a[i];

++i;

}

return max;

}
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Example: Find the Maximum (1st try)
Given the following Java class:
[ ... ]

Please provide a loop invariant for the loop construct with the comment
‘//Add invariant here‘ of the method ‘max‘. Beware this annotation has to be
a loop invariant. A loop invariant typically has the following structure:
[Template: loop_invariant, decreases, assignable ]

Based on the method ‘max‘, the goal is to find the maximum element in
the given array ‘a‘. [...]

/*@ loop_invariant 0 <= i && i <= a.length;

@ loop_invariant (\forall int k; 0 <= k && k < i; max

>= a[k]);

@ decreases a.length - i;

@ assignable i, max;

@ */

Problem: max not required to be in the array
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Example: Find the Maximum (2nd try)
The provided JML does not solve the task. [...] some proof goals were not
closed:
[...]

During verification, the following proof branches could not be closed:
Normal Execution (_a != null)
Please fix the JML loop invariant.

Let’s refine the loop invariant [...]

/*@ loop_invariant a != null;
@ loop_invariant 0 <= i && i <= a.length;

@ loop_invariant (\forall int k; 0 <= k && k < i; max

>= a[k]);

@ decreases a.length - i;

@ assignable i, max;

@*/

Problem: same (only added a != null)
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Example: Find the Maximum (3rd try)

[Same message]

To refine the loop invariant further [...]

/*@ loop_invariant a != null;

@ loop_invariant 0 <= i && i <= a.length;

@ loop_invariant (\forall int k; 0 <= k && k < i; max

>= a[k]);

@ loop_invariant (i > 0) ==>
@ (\exists int k; 0 <= k && k < i; max == a[k]);
@ decreases a.length - i;

@ assignable i, max;

@*/

Invariant that is strong enough to prove the post-condition.
Problem: Invariant is not inductive (because of i > 0)
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Example: Find the Maximum (4th try)

[Same message]

Let’s ensure that the JML loop invariant comprehensively captures [...]

/*@ loop_invariant a != null;

@ loop_invariant 0 <= i && i <= a.length;

@ loop_invariant (\forall int k; 0 <= k && k < i; max

>= a[k]);

@ loop_invariant
@ \exists int m; m >= 0 && m < i && max == a[m];
@ decreases a.length - i;

@ assignable i, max;

@ */

Correct invariant
Syntax error: ACSL \exists ... vs. JML (\exists ...)

50 May 3, 2025 S. Teuber and B. Beckert – Next Steps in LLM-Supported Java Verification



Example: Find the Maximum (5th try)

The provided code is not valid JML.
[...]

Error during JML parsing: Failed to parse JML fragment: Encountered unex-
pected token: “\exists” “\exists” at line 4, column 20.

Was expecting one of: [...]

[unfortunately still fails]
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Example: Find the Maximum (restart)
Second Attempt...

[Same initial question]

In the given ‘max‘ method, the loop is responsible for [...]

/*@ loop_invariant 0 <= i && i <= a.length;

@ loop_invariant (\forall int k; 0 <= k && k < i; max

>= a[k]);

@ decreases a.length - i;

@ assignable max, i;

@*/

Problem: max not required to be in array.

[Same feedback]

[Correct answer]
52 May 3, 2025 S. Teuber and B. Beckert – Next Steps in LLM-Supported Java Verification



More Difficult Example: Rotate an Array

public static void rotate(int[] a, int len) {

int[] b = new int[a.length];

int i = 0;

/*@ [...] @*/

for (i = 0; i < len; i++) {

b[i] = a[a.length - len + i];

}

/*@ [...] @*/

for (i = len; i < a.length; i++) {

b[i] = a[i - len];

}

/*@ [...] @*/

for (i = 0; i < a.length; i++) {

a[i] = b[i];

}

}
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More Difficult Example: Rotate an Array
Correct specification generated by GPT 4o

/* @ normal_behavior

@

@ requires a != null && 0 <= len && len <= a.length;

@

@ assignable a[*];

@

@ ensures (\forall int i; 0 <= i && i < len;

@ a[i] == \old(a[a.length - len + i]));

@ ensures (\forall int i; len <= i && i < a.length;

@ a[i] == \old(a[i - len]));

@*/
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Evaluation: Isolated Methods
Category # Benchmarks 𝜇± 𝜎 of success rate (%)

GPT 3.5
(n = 10)

GPT 4o
(n = 3)

Isolated Method 36 52.2 ± 4.3 62.0± 1.6

Success criterion: KeY proves code satisfies generated spec

Manual Inspection: Spec adequately specifies code behavior
Sometimes incomplete

Repetition/Feedback helps

75% of benchmarks successful
(over 10 runs, GPT 3.5)

Feedback from the verifier can help
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