
Verification of Autonomous Neural
Car Control with KeYmaera X
ABZ 2025 Case Study Challenge
Enguerrand Prebet, Samuel Teuber, André Platzer | 12th of June 2025



Leuschel et al. 2025

Symbolic dL-model for highway car control
→ infinite-time guarantee: absence of collision

What does that imply for concrete controllers?

Safe abstract
dL-model

Neural network
controller

black/whitebox?
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FOL(R) + program modalities

+ differential systems

[α]ϕ

ϕ

ϕ

ϕ

α

Hoare triple: init → [sys]post

ψ

x ′ = θ&ψ

. . .α α

α∗
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Uniform-substitution based calculus: p() → [a]p()

[x := f ()]p(x) ↔ p(f ())
(US)

ϕ

σ(ϕ)
if σ(ϕ) defined

Refinements as formulas: α ≤ β

All implemented in theorem prover KeYmaera X
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Two unordered cars → core question, even for multilane

sys ::=

(

ctrlo; (ctrle ∪ ?t < te + T )︸ ︷︷ ︸
control

;

accelCorr; dyn︸ ︷︷ ︸
plant

)∗

■ ctrlo: sets ao to a value in [−Bmax,Amax]

■ ctrle: ae , if ¬safe(ae), overrides with one in [−Bmax,−Bmin] behind
■ accelCorr: ensures 0 ≤ ve, vo ≤ V RSS-like [Amin,Amax] in front
■ dyn: cars move

x ′
e = ve, v ′

e = ae,

x ′
o = vo, v ′

o = ao,

t ′ = 1
& t ≤ te + T

Desynchronised controllers:
ctrlo

ctrle

≤ T ≤ T ≤ T
t
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Theorem
These formulas are proved in dL:

ctx ∧ xe + L ≤ xo ∧ init → [sys]xe + L ≤ xo ctx ∧ xo + L ≤ xe ∧ ĩnit → [sys]xo + L ≤ xe

init ::= xe +
v2

e

2Bmin
+ L ≤ xo +

v2
o

2Bmax
ĩnit ::= xe +

(ve − V )2

2(−Amin)
+ L ≤ xo +

(vo − V )2

2(−Amax)

KeYmaera X proofs and experiments online: https://doi.org/10.5281/zenodo.14959858

Motivation Modelling with dL Applications of ModelPlex Evaluation and the Model2Sim Gap Conclusion References

6/18 June 12, 2025 E. Prebet, S. Teuber and A. Platzer: Verification of Autonomous Neural Car Control with KeYmaera X

Safety proofs

https://doi.org/10.5281/zenodo.14959858


Safe model
in dL

Neural Network
Monitor?
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Safe model
in dL

Neural Network
Monitor

Safe NN-model
in dL

Controller
Monitor

dRL

ModelPlex

Simplification

input
acc

⩽

input
max

acc
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Safe model
in dL

Neural Network
Monitor

Safe NN-model
in dL

Controller
Monitor

dRL

ModelPlex

Simplification
First-order formula for

∀x , (x = inp → ⟨ctrl⟩(x = out))
Runtime monitor
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Safe model
in dL

Neural Network
Monitor

Safe NN-model
in dL

Controller
Monitor

dRL

ModelPlex

Simplification

Assumptions:
• NN outputs affect acceleration
• In the invariant
• Focus: Controlled car behind
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Via dL: Correct by Construction Monitoring Condition

y+
1 ≥ y+

2 ∧ y+
1 ≥ y+

3

∨ y+
2 > y+

1 ∧ y+
2 ≥ y+

3 ∧(
Bmin ≤ 0 ≤ Amax ∧ ve ≥ 0 ∧ pose(Bmin) + (

0
Bmin

+ 1)Tve + L < poso
)

∨ y+
3 > y+

1 ∧ y+
3 > y+

2 ∧
(
Bmin ≤ Amax ∧ ve + AmaxT < 0 ∧ pose(Amax) + L < poso

∨ Bmin ≤ Amax ∧ ve + AmaxT ≥ 0 ∧ pose(Bmin) + (
−Amax

Bmin
+ 1)(

Amax

2
T 2 + Tve) + L < poso

)
Given concrete inputs and outputs, this form tells us what actions are provably safe.
But how do we put this knowledge into practice?

Monitoring Shielding Verification
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Check NN actions during runtime at each step

input
acc1

dL backup
controller

acc2

Monitor

if monitor satisfied
return acc1

accelse
return acc2

Can be combined with correct-by-construction sandbox synthesis (Bohrer et al. 2018)

Mitsch and Platzer 2016
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Monitoring / Sandboxing (VeriPhy)



Insight: RL Agents often learn a distribution of actions
⇒ Constrain action space

input

Controller Monitor:
Compute safe actions

Constrain
action space to A

acc

A ⊆ {brake, idle, accelerate}

Provably safe actions during training & deployment!
Can also take into account model monitoring

Fulton and Platzer 2018
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Objective: A priori guarantees on safety of NN controller

(
αctrl ;αplant

)∗
Safe

(
αg︸︷︷︸;αplant

)∗
Refinement

invariant ∧ ¬monitor

g

NN Verification (NCubeV):
Show that unsat

VerSAILLE
based on

ModelPlex & Loop Invariants

Nondeterministic Mirror:
αg := mirror (g)

Safe

Neural Network Verification:

∀x ϕ (x ,g (x))
Before Deployment

At Runtime

input acc

A priori and infinite-time horizon safety guarantees

Teuber, Mitsch, and Platzer 2024
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Behaviour of FASTER
Spec:
“This action increases the speed (up to vmax) with an acceleration up to amax m/s2.
Once the car reaches vmax, the acceleration is 0 m/s2.”

Simulator:
Uses the configuration DiscreteMetaAction: FASTER increases the reference velocity vr .
Subsequently, a low-level proportional controller adjusts the acceleration.

⇒ FASTER can lead to braking if vr < v!

We adjusted the simulator’s configuration and retrained a new set of NNs using the provided scripts.
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Performance: Standalone NN / Monitoring / Shielding
Original NN Monitoring (VeriPhy) Shielding (JSC)

Reward Crash Reward Crash Reward Crash
17.63 ± 0.21 0 % 16.72 ± 0.32 0 % 17.63 ± 0.21 0 %

This looks good – let’s verify it! (1000 simulations)

For starters: 2 cars
Verifier (NCubeV): 3.6 hours
NN size: 2x256 ReLU nodes
14,917 counterexample regions
(exhaustive!)
Sampling trajectories: 538 concrete crashes

What went wrong?

0 50 100 150 200
Position [m]

0
2
4
6Ti

m
e 

[s
]

Ego (NN) Ego (Braking) Front Car
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Behaviour of other cars
Spec:
“Maximum braking acceleration of front vehicle: βmax”

Simulator (highway-env):
Other cars are controlled by the Intelligent Driver Model
Originally used for congestion modelling; Cars rarely/never brake!

We adjusted the implementation of the other cars to increase likelihood of braking.
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Performance: Standalone NN / Monitoring / Shielding

Env
Original NN Monitoring (VeriPhy) Shielding (JSC)

Reward Crash Reward Crash Reward Crash
default (IDM) 17.63 ± 0.21 0 % 16.72 ± 0.32 0 % 17.63 ± 0.21 0 %
braking 5.44 ± 1.27 99.6% 16.47 ± 0.05 0 % 16.47 ± 0.05 0 %

Can we train a better NN?

Modifications:
80% of initial states: within controllable region
Front Car: Initiates emergency brake with 15% likelihood
Smaller NN for better verifiability (2 layers with 16 neurons)

Performance for braking: 16.08 ± 0.07 reward / 0 crashes

(1000 simulations)
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Verification w.r.t. full specification for front scenario:
2-5 cars in the front
Assume Bmin = Bmax

Verification:
1.9 hours
11,059 counterexample regions
default: 4852 crashes
braking: 8713 crashes

Would braking have saved the car?
default: still 181 crashes
braking: still 40 crashes

?!?!
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Environment Model
Spec: Continuous evolution of environment

Simulator (highway-env): Euler Approximations
⇒ Euler Crashes:
Occurrence of crash dependent on precision of approximation

Additionally: Simulator seems to initialize environment on small subset of
admissible states.

The Model-to-Simulation Gap

Unifying assumptions across formal models & simulations is challenging
Safe control requires simulators showing full breadth of possible behaviour
As is, highway-env is no reliable basis for training safe car control NNs.

This is a problem beyond this concrete case study!
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Contributions
General dL model for highway car control

Derivation of real arithmetic constraints for
monitoring/shielding/verification
An empirical validation of all three dL-based
safeguarding techniques

All presented techniques are general!

Observations

Consistency between different views of the
system (model, simulation,...) is challenging
BUT: Consistency is paramount to train provably
safe ML systems

sys ::=
(
ctrlo; (ctrle ∪ ?t < te + T )︸ ︷︷ ︸

control

; accelCorr; dyn︸ ︷︷ ︸
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xe + L ≤ xo ∧
(
ae ≤ Bmin ∧ pose(Bmin) + L < poso

∨ Bmin ≤ ae ∧ ve + aeT < 0 ∧ pose(ae) + L < poso

∨ Bmin ≤ ae ∧ ve + aeT ≥ 0 ∧ pose(Bmin) + corrDist + L < poso
)

pose(ae) = xe −
v2

e

2ae

poso = xo −
v2

o

2Bmax

corrDist = (
−ae

Bmin
+ 1)(

ae

2
T 2 + Tve)
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Satefy formula when behind
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Full dL Model
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